
OPD: A Toolset for Optimized Pipeline Design 

Suresh Krishna 

Dept. of EECS, CS Division, 

University of California, Berkeley. 

ABSTRACT 

OPD is a set of four co-ordinated synthesis and analysis tools for the 

design of optimized VLSI data path and CPU pipelines. Together, these 

tools cover a wide range of design tasks, from functional partitioning of the 

system into pipeline stages through datapath definition and clocking, to the 

handling of technology-specific constraints. 

OPD has tools for stage partitioning, clocking scheme calculation, 

datapath sequencing, and pipeline initiation scheduling. We describe these 

tools as well as the optimization algorithms they use. We discuss both pro­

babilistic and heuristic optimization techniques. 

We show how it is possible to rapidly design high-quality pipeline~ by 

using OPD with existing CAD tools such as logic synthesizers. We show 

large as well as small examples taken from VLSI chips and discrete logic 

machines. 

February 29, 1988 

0 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
29 FEB 1988 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1988 to 00-00-1988  

4. TITLE AND SUBTITLE 
OPD: A Toolset for Optimized Pipeline Design 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical Engineering
and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
http://www.eecs.berkeley.edu/Pubs/TechRpts/1988/CSD-88-411.pdf OPD is a set of four co-ordinated
synthesis and analysis tools for the design of optimized VLSI datapath and CPU pipelines. Together, these
tools cover a wide range of design tasks, from functional partitioning of the system into pipeline stages
through datapath definition and clocking, to the handling of technology-specific constraints. OPD has tools
for stage partitioning, clocking scheme calculation, datapath sequencing, and pipeline initiation scheduling.
We describe these tools as well as the optimization algorithms they use. We discuss both probabilistic and
heuristic optimization techniques. We show how it is possible to rapidly design high-quality pipelines by
using OPD with existing CAD tools such as logic synthesizers. We show large as well as small examples
taken from VLSI chips and discrete logic machines. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

Same as
Report 
(SAR) 

18. NUMBER
OF PAGES 

120 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



11 



1 

Acknowledgements 

I thank Prof. Carlo H. Sequin, my Advisor, who greatly helped me and guided me in 

all aspects of my research. 

The contribution of several people from the Berkeley CAD Group was essential. I 

thank Srinivas Devadas and Jeff Burns for many helpful discussions throughout the course 

of this work. 

I thank Kinson Ho, whose comments greatly improved the clarity of this report. 

I gratefully acknowledge the financial support provided by the Defense Advanced Research 

Projects Agency under its DARPA-VLSI Program (contract number N00039-87-C-0182). 



Section I 

Section II 

ILl 
11.2 
11.3 

Section III 

III.l 
III.2 
1II.3 
1II.4 

Section IV 

Conclusion 
References 

Appendix 1 

Appendix 2 
Appendix 3 

Appendix 4 

Contents 

Project Overview 

Stage Partitioning, Phase Calculation 

Problem Description 

Optimization Algorithms 

Phase Calculation 

Phase Assignment 

Problem Description 

Simulated Annealing 

Heuristic Algorithms 

Constraints Completeness 

Reservation Table Scheduling 

SP Input Format, HP21gMX Example 

PA Input Format, SPUR-FPU Example 

RISC-11 Example 

Control Synthesis 

2 



Section I - Project Overview 

We examine why it is desirable to have a set of tools for Optimal Pipeline Design, and show 

how the sub-tools of OPD work together and with existing tools such as logic synthesizers. 

We also compare OPD to similar tools. 

1. Motivation 

A pipelined design is often the best way to achieve high performance at a reasonable cost. 

Pipelining a system dramatically enhances its performance for a relatively modest increase 

in cost. This is why most digital machines today are pipelined. However, as Fig.l shows, 

many complex and inter-dependent steps are required to design a good pipe. OPD provides 

a tool set to assist the designer in each one of the steps in Fig.l, with the exception of step 

2. The objective of OPD is to help designers produce better pipes in less time. 

We use two primary quantities to measure the quality of a pipeline design. The first 

is throughput, or average Bow rate; this indicates the processing speed of the system. The 

second is the complexity of the datapath and of the logic required to control the datapath. 

It is important to know this, since complex logic implies longer delays and increased chip 

area. The synthesis tools of OPD aim to maximize throughput and minimize complexity, 

while the analysis tools rapidly calculate these two quantities. 

Fig.l shows how the system specifications evolve through various levels as the design 

progresses. Initially, we know the behavioral specification [Blackburn 85] of the system, 

which defines the system's function. The first step is to split this function into a set of 

overlapping subfunctions that will define the pipeline stages. The second step is to choose a 

detailed datapath that will implement the system's functions. This leads to a register­

transfer level (RTL) [Snow 78] description of the system. This step, and only this step, is 

entirely left to the designer. OPD is not a datapath synthesizer; however, it can quickly 

analyze the speed of a proposed datapath. Of course, this second step depends very much 

on the target technology. The third step is to determine a clocking scheme to optimally 

3 



FUNCTION 

STAGES 

[ DATA PATH 

[ 

[ 

PHASES 

PHASE 
ASSIGNMENT 

INITIATION 
SCHEDULE 

CONTROL 
LOGIC 

4 

FIG 1: PIPE DESIGN STEPS 

DATA FLOW GRAPH (DFG) 

TARGET PERFORMANCE: 

a ~ 200ns S MILUON I SEC 

--+ 0 ......._200ns 
b -o~ 
c;__/ 

... 
STEP #1 

6 
PARTITIONED DFG 

a 
CYCLE TIME = 200ns 

STAGE 
PARTITIONING 

o( I 
b 

... 
STEP #2 
DATAPATH 
DESIGN 

LATCH LO LI L2 
o( 

a ... 
b STEP #3 

c ~ 
STAGE #1 STAGE #2 

PHASE 
CALCULATION 

o( I 
___Il_ ¢

1 
(lOOns) ... 

_JL_ ¢2. (lOOns) 

STEP #4 

EJ 
a PHASE 

ASSIGNMENT 
b 

c o( 

STAG_E #_1 t-X-+-1 __,XI 
STAGE #2 

a,b,c ENTER EVERY 200ns 

o( 

... 
[CONTROL LOGIC 
SYNTHESIS 



5 

sequence the above set of stages, usmg the datapath emerging from step 2. This step 

involves choosing the number of clock phases and their lengths. The fourth step is to deter­

mine on which clock cycle and phase each gate in the datapath should be run on. The fifth 

step is to choose an initiation sequence for the above datapath. This tells us exactly when 

new data should be allowed to enter the pipeline to maximize processing throughput. 

These steps are complex and time-consuming if performed manually. Furthermore, 

they are highly inter-related, and thus require a great amount of discipline to maintain 

overall consistency of the design decisions. The first step, stage partitioning, requires the 

exploration of a large number of alternatives. The third step, clocking scheme determina­

tion, depends on the behavioral stage partitioning as well as the detailed datapath imple­

mentation. It is hard to keep track of both of these manually. The fourth and fifth steps, 

which deal with detailed datapaths, are especially complex in the case of MOS-VLSI [Mead 

80] [Weste 85] systems, since there are many factors to be considered during these steps. 

One such factor is the use of complex multiphase clocking schemes ([Weste 85] chap. 5.4). 

These offer great flexibility, but complicate the designer's task by introducing additional 

degrees of freedom. Similarly, the use of transparent latches as pipeline staging elements 

([Weste 85] ch 5.4 and [Kogge 81] ch 2) makes it possible to effectively trade time across 

pipe stages - a fast stage can make up for a slow one. However, the designer must keep 

track of signal delays across these latches. Other factors to be kept in mind are possible 

constraints that acceptable phase assignments must satisfy. Such constraints can result 

from external signals, or can arise because part of the phase assignment has already been 

done, because gates are shared across pipe stages, because of precharging schemes, or 

because of layout area constraints that limit the number of control lines. 

OPD has the ability to take into account all the detailed constraints found at the 

register-transfer level when assigning clock phases to gates and latches in the datapath. 

OPD does not stop at the behavioral level, where the system description is usually rough 

and approximate; it goes from the behavioral level right down to the final datapath blocks. 



6 

Moreover, OPD contains features that make it suitable both for VLSI datapath and CPU 

pipeline design tasks. 

2. OPD Description and Usage Scenario 

OPD consists of a set of four tools, that cover the design levels from system behavior to 

datapath and logic synthesis. These tools work primarily in a top-down fashion, where 

behavioral design tasks are performed before layout related optimization. However, OPD 

runs fast, which makes it possible to iterate each design step many times. Moreover, each 

tool within OPD accepts a rich set of constraints that can be used to feed OPD with infor­

mation gained in previous design cycles. Fig.2 shows how these tools can be used together 

and with existing tools, such as logic synthesis routines. We now describe each tool briefly. 

We will describe each tool in detail later; our objective here is to show how the tools work 

together. 

• SP: this is the Stage Partitioning tool. Fig.3 shows an example of what SP does. The 

input and output files for this example are in Appendix 1. 

The input to SP consists of three items. The first is a set of dataflow graphs [Snow 78] 

[Park 85] [Parker 85] that describe each one of the functions the system is to execute (in 

the case of a CPU, each graph might correspond to one instruction). The nodes of these 

graphs correspond to simple, atomic operations (such as an ALU operation), and each 

node has an attached delay. Arcs show where each operation gets its arguments from, 

and where it sends its results to; each arc has an attached bit-width. A probability of 

occurrence is attached to each dataflow graph that shows how frequently tha..t particular 

function will be executed. The second input item is a description of shared resources and 

resource constraints. The third is the target pipeline cycle time. Given these, SP will 

show where the staging latches should be placed in order to achieve the target stage 

length and, as a secondary objective, to minimize the number of bits of staging latches. 

• PC: this is the Phase Calculation tool. Fig.4 shows an example of what PC does. 

PC takes three input items. The first is the partitioned set of graphs from SP along with 



i 

FIG 2: OPD AND OTHER TOOLS 

FUNCTION 
OBJECTIVES 

STAGE 
PARTITIONER -----~PARTITIONED SYSTEM 

J, ~ l '~ 
CONCEPTUAL 

ESTIMATOR PHASE DATAPATH 
CALCULATION SYNTHESIS 

PROGRAMS 

CLOCKING 
s:HEME 

I 

PHASE 
ASSIGNMENT 

u 1 
I' 

DATAPATH 

TECHNOLOGY 
LIBRARY 
(FUNCTIONAL BLOCKS) 

l 
DELAY 
FIGURES 

---------~ DATAPATH +CLOCKING 

SCHEDULING -c RESERVATION TABLE 

L.::======:::::..J INITIATION SEQUENCE 

PIPELINE CONTROLLER 

DATAPATH 

SCHEDULING 

LOGIC 
SYNTHESIS 

DESIGN REPRESENTATION 

FLOW OF DESIGN INFORMATION 

DESIGN TOOL PROVIDED BY OPD 

OTHER DESIG:-> TOOL 

' 
LOGIC 
SYNTHESIS 

LEGE:"D 



FIG 3: AN SP ILLUSTRATION 

=: :o~: .... n·--.,..-------+JI> 

8 
lOOn• 

,,M Lr oJ t_.o:· 
-- _ L810:fns 

0~'-------L-------~ + 7 I . 
----+ ~ 

V.ALL2 WALL3 WALL4 WALLS 

lOOns 

200ns 
Ml 

lOOns 

8 
lOOns 

0;,--( PI 

M2 

--1-+ 0 +--+___.J-------, 800ns 

Dl 

M3 P2 

STAGE #1 
STAGE #2 

STAGE #3 

8 

SYSTEM DATAFLOW 
GRAPH 

THROUGHPUT: 
ONE DATUM PER 400ns 

--NOTE: WALL = STAGE LATCH 
WALL NAMES REFER TO FILE IN APPX I 

PARTITIONED 
DATA FLOW GRAPH 

THROUGHPUT: 
ONE DATUM PER 200ns 

--NOTE: NODE !\'AMES REFER 
TO FILES IN APPX I 

(Actual Files in APPEJ\'DIX 1) 



FIG 4: A PC ILLUSTR-\TIOi\ 

STAGE.Nl STAGENJ 

A2 

~' 
"'--"" ~ B4 l-----11--lll> 

WALLS 

G 

~ Gt:: 
8 G 

--~ 

G 
G 
8 
G 
G 

WALL9 

STAGE~l 

STAGUl 

/ 

STAG En 

STAGE•4 

STAGU4 

9 

--NOTE I'ODE NAMES REFER TO FILES IN APPX 2 
NODE DELAYS SAME AS I!" APPX 2 

--!'OTE. A WALL IS A STAGE LATCH 
(CF APPX 2) 

(ACTUAL FILES 1:'\ APPE:\DIX 2) 



10 

the longest stage time (cycle time). The second is the target phase length. The third is a 

description of the datapath that will implement these dataflow graphs (provided by the 

designer) along with all the datapath-level constraints to suit the target technology; PC 

will then split up the cycle into a set of phases whose length will be as close as possible 

to the target phase length, and such that all the datapath constraints can be met and the 

longest stage time is minimized. PC therefore breaks up the clock cycle chosen by SP 

into a set of phases that are well suited to the final datapath. The data path is described 

as a DAG; the nodes correspond to hardware operators, and the arcs to signal nets. 

There is also a set of constraints associated with the data path. The purpose of these con­

straints is to capture technological limitations on acceptable phase sets. Such limitations 

might arise from particular layout or clocking schemes. The datapath specification is 

described fully in Appendix 2. 

• PA: this is the Phase Assignment tool. Fig.5 shows an example of what PA does. PA 

determines on which phase/cycle each one of the datapath gates and latches should be 

clocked in order to satisfy the target technology constraints and to maximize pipe 

throughput. 

The input to PA consists of four items. The first is a description of datapath blocks used 

to implement the system. The second is a set of constraints that the resulting Phase 

Assignment has to follow in order to be suitable for the target technology. The third and 

fourth items are the partitioning from SP and phase lengths from PC. PA will then 

determine on which phase/cycle each one of the datapath blocks should be clocked. PA 

uses a more precise optimization algorithm than PC. PA produces a reservation table 

that shows exactly how long each stage will be in the final design. 

• SCHED: The reservation table scheduler. Fig.6 shows an example of what SCHED does. 

The input to SCHED is the reservation table produces by PA. SCHED will then deter­

mine when new data should be allowed to enter the pipeline in order to maximize the 

overall processing throughput. The output from SCHED is an optimal initiation 



FIG 5: PA ILLUSTRATIO~ 

1:-.IPUT TO PA 

LATCH 

I--

I 
tl 

GATES 

20ns I--

I 
12 '-

STAGE #1 

30ns 

I 
t3 

¢ is 20ns 
1 

¢ is 30ns 
2 

constraint: 
(14, 16 must be same phase) 

LATCH GATES LATCH 

H 40ns ~ 
I 

IS 

I I 
14 t6 

STAGE #2 

PHASE LENGTHS 

"'-----...J· I Cycle Time is 5 Ons 

OUTPUT FR0~1 PA 

tl = cycleO.phase2 
12 = c ]. pl 
t3 = cl.p: 
t4 = c2.pl 
tS = c2.p2 
t6 = c3.pl 

longest stage = 1 cycle = SOns 

Reservation Table = STAGE#liXI I 
STAGE #2 X 

PA 

11 



FIG 6: SCHED ILLUSTRATION 

LATCH LATCH LATCH 

DATA IN lOOns 200ns 
STAGE #1 STAGE #2 

STAGE #1 X 

STAGE #2 X X 

DATA ENTERS AT TIMES 

T = CYCLE 0, CYCLE 2, CYCLE 4 ... 

STAG E #1 

STAG E#2 

1 

DATA #1 
ENTERS 

1 

2 

1 

DATA #2 
ENTERS 

2 

RESULTS OUT 

3 

2 

DATA #3 
ENTERS 

DATAPATH 

CYCLE TIME= lOOns 

RESERVATION TABLE 

FROM PA 

SCHED 

INITIATION SCHEDULE 

STEADY-STATE 

STAGE USAGE PATTERN 

12 



13 

sequence [Kogge 81} for the pipe. 

The output from SCHED fully defines when each control signal will have to be activated; 

we can feed this information to logic synthesis routines such as MIS [Brayton 86}, 

ESPRESSO [Brayton 83} or ESPRESSO-ML [Brayton 84] or [Leive 81] to generate the pipe­

line controller automatically. We will show some examples of how this can be done semi­

automatically for two pipeline control strategies. However, we have not built a tool to gen­

erate the pipeline controller in a fully automatic fashion. This is because there are many 

different pipeline control styles. 

During the initial design stages, we can profitably use estimator functions [Kurdahi 

85] to get approximate delay figures for each node in the behavioral graphs. These estima­

tors use factors such as bit-width and type of operation (integer versus floating point, for 

instance) to provide delay estimates that can be used for comparative purposes. 

It was decided not to include automatic datapath synthesis into OPD. Automatic 

module selection for datapath design is a very complex task; most datapath synthesis rou­

tines [Park 85] [Park 85b] [Parker 85] [Thomas 83] work mainly with the approximate 

information available in the system's behavioral description. These routines therefore have 

difficulty taking into account all the constraints that result from target technology details. 

As a result, most such programs produce technology-independent datapaths that can be 

very far from optimal when they are mapped into a particular target technology. This does 

not fit with OPD's "toolbox" approach; we take the "vertical" route; OPD has tools that 

remain useful down to the layout level. 

In summary, OPD is a sequence of tools that perform progressively more detailed 

optimization tasks on pipelines. The higher-level tool SP has a very simplistic view of the 

system; the later tools (PA, SCHED) take into account more detailed information. Of 

course, these various optimization tasks are inter-dependent. For instance, we want to do 

SP such that when the datapath is finally scheduled using SCHED, the throughput will be 

maximal. 



14 

To handle these inter-dependencies, each tool has a simplified view of what the next 

tool will do; it uses this simplified view to perform optimization at its own level. For exam­

ple, SP hopes that, by minimizing the longest stage length, PC will be able to find phases 

that lead to a faster pipe. In fact, the cost function -for SP could be a simplified version of 

PC. The cost function for PC is actually a simplified version of PA. Of course, SCHED 

knows the exact, final pipe speed. 

3. OPD Context and Related Tools 

We show how OPD relates to and differs from similar tools. We are mainly concerned with 

datapath synthesis systems and clocking scheme synthesizers. 

Datapath synthesizers take a behavioral description of a system, perhaps augmented by 

performance and cost constraints, and produce a register-transfer level structure that 

implements this behavior. [Blackburn 85] provides an overview of one such set of tools, the 

CMU Design Automation System. A datapath synthesizer is also described in [Parker 85]. 

Fig.7, from [Snow 78], shows the strategy used by the CMU/DA. OPD and the datapath 

synthesizers are complementary tools. OPD can use a synthesizer to map the partitioned 

stage graph into a register-transfer level datapath. From then on, OPD could perform 

phase length calculation and phase assignment using the synthesized datapath. A possible 

pitfall of this approach is that the synthesis program needs to know quite a lot about the 

target technology and the pipeline structure to produce a good datapath. The pipelining 

and datapath synthesis tasks are inter-dependent. 

Clocking scheme synthesizers, such as [Park 85] and [Park 85b], decide how to pipe­

line the datapath and calculate the optimal number of phases per clock cycle, as well as the 

length of each phase. However, these tools work at a fairly high level of abstraction, where 

the details of the final datapath are still unknown. As a result, the phases produced by 

these tools tend to match the structure of the pipeline stages. This is not what we want in 

the case of a MOS-VLSI pipe. We want the phases to match the interconnection of the 

gates and the precharging and bussing schemes. Fig.8 and Fig.9 show a phase calculation 



15 

FIG 7: CMU IDA OVERVIEW 

!SPS SYSTEM SPEC! FICA T!ON 

1 

GLOBAL 
OPTIMIZER 

DATA MEMORY 
ALLOCATOR 

LAYOUT 
PROCESSOR 

l 
CIRCUIT 

VALUE TRACE: DATA FLOW GRAPH 

CONTROL 
ALLOCATOR 

PARTITIONED VALUE TRACE 

CONTROL GRAPH 

COMPONENTS 
LIBRARY 

(TAKEN FROM [SNOW 78]) 



16 

found in [Park 85). Each one of the two graphs in Fig.8 represents one instruction that the 

system, an HP21-MX CPU, is able to execute. Each phase corresponds to one stage latch; 

phases serve to clock pipe stages. Fig.lO shows what OPD means by a phase; a phase is 

used to clock gates within a stage, as is commonly done in MOS designs. OPD needs 

detailed datapath information, in the form of constraints on the possible phase assign-

ments, in order to calculate these MOS-phases. 

4. Software Organization 

The software is organized as a set of independent programs which communicate via shared 

files. The table below gives some statistics. The more time-critical routines are in the 

language C [Kernighan 78], while Franz LISP [Franz 86] is used everywhere else. 

Function Language approx #lines 
(excluding test code) 

Stage Partition Franz LISP 2000 

and Phase Calculation 

Preprocessing for Franz LISP 1500 

Phase Assignment 

Phase Assignment c 3000 
Heuristic & Annealing 

Reserv. table Scheduler c 700 

The next chapter describes the Stage Partitioning and Phase Calculation tools. 



i j 

FIG 8: HP21-I\1X CPU DATA FLOW GR.\PH 

(Ll) RUNS ON 
PHASE PHil 

STAGE #1: llSns 

NOTE: THE NUMBERS ARE NODE DELAYS 

D 

D 

(L2) 

INSTRUCTION #1 

(L3) 

STAGE#2: 120ns 

INSTRUCTION #2 

(L2) RUNS 
ON PHI2 

(L3) RUNS 
ON PHI3 

HP21-MX GRAPHS FROM [PARK 85) 

ACTUAL FILES IN APPENDIX 1 



PHil 

PHIZ 

PHI3 

FIG 9: HP21-MX PHASES ACCORDING TO [PARK 85] 

DATA ENTERS 
lATCH (U) CLOCKED .. lATCH (L3) CLOCKED 

~-----r--t------'n.____ __ n__ 

1::::;.::-:::::•:... r:::j 
115NS 

\{{) >•·······•:• • u:··· .. H i-•····l ••••::::<••r·•••••••.•••·•120NS 

t:.: •:::::::: :rr . ::: .: -:: •. :: •. ! 
CYCLE = 120NS 

PHil: CLOCKS DATA INTO (Ll) 

PHI2: CLOCKS DATA AT THE END OF 1ST STAGE 

PHI3: CLOCKS DATA AT THE END OF 2ND STAGE 

PHI(I) TO PHI(I+l) IS THE LENGTH OF STAGE #(I) 

PHASES SERVE TO SEQUENCE STAGE LATCHES IN [PARK 85] 

18 



19 

FIG 10: I\IOS PHASES IN OPD 

_j SONS 

30NS 

----~------------~ll lONS 

CYCLE= 90NS 

PHil PHI2 PHI3 

ONE PIPELINE STAGE 

\fOS PHASES I:\ OPD ARE l7SED TO SEQCE:\CE GATES -- :\OT STAGE L.~ TCHES 



20 

Section II - Stage Partitioning and Phase Calculation 

In this chapter, we define the Optimal Stage Partitioning problem (SP), as well as the 

Optimal Phase Calculation (PC) problem. We use the Microcode Compaction Problem 

[Fisher 81] to show that SP is NP-complete. We describe the heuristic algorithms used to 

perform the SP task, and finally show how the same algorithms can be used to perform PC. 

We also present other possible approaches for solving SP. 

1. Problem Specification for SP 

1.1. Input 

The input to SP consists of a set of dataflow graphs ("traces") with an attached probability 

of occurrence, plus a set of resource constraints and a target stage length. Each graph 

represents one of the operations or instructions that the system is to execute. The attached 

probability represents how often that particular operation is expected to occur. For 

instance, in a CPU, there might be one graph for load/store instructions, another for arith­

metic, and another for branches. The attached probabilities are the relative dynamic 

instruction frequencies. Specifically, the input consists of the following elements. 

20 



N,(i =l, .. ,NN) 

RT/J = l, .. ,NRT) 

PT~(k = l, .. ,NT) 

TARG 

21 

A set of NN dataflow nodes. A node corresponds to an operation; a 

node can optionally have an attached resource-type RT1 used to 

specify resource constraints. For instance, in a CPU, the dataflow 

node corresponding to arithmetic instructions would have ALU as an 

associated resource type. This models the fact that arithmetic in­

structions require the ALU (or one of the ALUs if there are many). 

A set of resource-types; each resource-type has an associated number 

called the "limit". A resource-type corresponds to a class of 

hardware units; the "limit" is the number of available units of that 

type. For instance, we may have a resource-type "ADDER" with a 

"limit" of 2. This means that not more than 2 "ADD" dataflow 

nodes can be simultaneously scheduled. 

A list of "traces". Each trace is a directed acyclic dataflow graph on 

a subset of the above set of nodes. Each arc of each trace has an as­

sociated bit-width. Each trace corresponds to one of the operations 

that the system will have to execute. 

A probability figure attached to each trace. PT~ is the probability, 

or relative frequency, with which the system will be expected to exe­

cute the operation corresponding to T~. 

The target stage length 

Traditional Data Flow Graph input descriptions need to have a way to describe that certain 

operations are mutually exclusive in the system. Fig.lO.bis shows the problem; if we did 

not specify that nodes A and E are never simultaneously active, the stage partitioner would 

(falsely) deduce that the critical path in the system is A-C-E. This path can never occur. 

Our system description avoids this problem altogether since we only specify those dataflow 

graphs that corresponds to actual, possible instructions. For the example of Fig.l O.bis, we 

would describe the system by giving two dataflow graphs, each one corresponding to a real 

operation. The first graph would be A-C-D, the second B-C-E. OPD will trace these graphs 

independently, and avoid the false path A-C-E altogether. We therefore do not .need a spe-

cial dataflow node to describe mutual exclusivity in OPD. 

1.2. Optimization Objective 

The objective is to partition the given set of nodes into consecutive pipeline stages such 

that the length of each stage is minimal and less than TARG and, secondarily, so as to 

minimize the sum of the bit-widths of the arcs that are cut by stage latches. This 



FIG lO.BIS: MUTUAL EXCLUSION 

DELAY=lOns DELAY=Sns 

OPERATIONS A AND E 

ARE MUTUALLY EXCLUSIVE 

THE PATH I A- C - E (20ns) 

IS A "FALSE" CRITICAL PATH - IT CAN NOT OCCUR 

I A- c - Dl AND I B - c - E I 
ARE THE ACTUAL CRITICAL PATHS. 

THEY ARE 15ns LONG. 

22 



23 

minimizes the number of stage latch bits. In fact, SP first fixes the number of stages, then 

moves the stage latches around (described below). 

The cost function we use is equal to the length of the longest stage plus a small factor 

times the total number of stage latch bits. The length of each stage is determined by 

scheduling the nodes that are in that stage so as to respect the precedence constraints 

specified by the "traces" and so as to respect the resource limit constraints specified by the 

RT~t. 

We also take into account resource sharing between nodes in different stages. For 

instance, assume two stages Sl and S2 both have ADD operations; Sl has Nl ADDs, while 

S2 has N2 ADDs. Furthermore, assume there are only NADDER "ADDERs" available in 

the system. We would then set the stage lengths for both Sl and S2 to be greater than or 

equal to TMAX = ~~+~~ . This is because TMAX is the time it will take to get data 

through both these stages; the possibility to overlap Sl and S2 will be reduced due to this 

resource sharing. Our calculation does assume, however, that some overlap between Sl 

and S2 will occur so as to keep the shared resources busy all the time. In other words, we 

take the best-case impact of resource sharing on the stage length term: we assume that the 

shared resources will always be kept busy. 

The above cost function makes the slowest trace determine the cycle time. For 

instance, in a CPU, this means that the slowest instruction determines the machines cycle 

time. Another possible choice is to calculate the longest stage time for each "trace'. We 

could then use the weighted average of these per-trace longest times as the (:OSt. Fig.ll 

shows the difference between these two cost functions. In order to benefit from the possibil­

ity of having different cycle times for each trace, we need a controller which can dynami­

cally choose the proper cycle time according to the operation the system is executing. 

Examples of such machines are the PDPll/34 and the PDPll/40. These machines had 

micro-engines that could choose between two or three possible micro-cycle times 1[SBN 82] 

ch. 34) in a dynamic fashion, according to the particular micro-instruction being executed. 



FIG 11: WORST-CASE VERSUS PER-TRACE CYCLE TIMES 

lOOns lOOns 

TRACE Tl MICRO ALU 
MEMORY 

90% OCCURRENCE 

NON-BRANCH MICROCYCLE 
30ns 

NEXT ADDRESS 
(SEQUENCER) 

lOOns lOOns 

TRACE T2 
MICRO ALU 

10% OCCURRENCE MEMORY 

BRANCH MICROCYCLE 

30ns 

NEXT ADDRESS 
(SEQUENCER) 

STAGE LATCH 

SINGLE CYCLE TIME FOR ALL MICRO-INSTRUCTIONS: CYCLE = 130ns 

VARIABLE CYCLE TIME: CYCLE(Tl) = lOOns 

CYCLE(T2) = 130ns 

AVERAGE= 0.9•100 + 0.1•130 

AVERAGE CYCLE TIME = 103ns « 130ns !! 

THE VARIABLE CYCLE TIME LEADS TO INCREASED PROCESSING THROUGHPUT 

24 



25 

However, OPD uses the simpler worst-case stage length cost. 

The output from SP is therefore a list of stage latches that completely partition each 

one of the input traces into disjoint stages. Each latch therefore consists of a cut-set of arcs 

for each input trace. Appendix 1 describes the input and output format used by SP, and 

shows two examples: a small test example, and the HP21-MX CPU graph taken from [Park 

85]. 

1.3. Skewed Stages 

SP also has the capability of inserting stage-latches that do not form cut-sets for all the 

input graphs. This feature is optional, since inserting such latches will lead to a "skewed" 

pipeline. In such a pipeline, the total number of clock cycle required for a data item to 

travel through all the stages depends on the data item - it may require one or more extra 

cycles if it hits the non-cutset latches. Fig.12 shows a "skewed" pipeline example inspired 

from a very common micro-engine design. Micro-engines (and RISC CPUs) are often 

skewed pipelines; that is, some data takes longer than others to filter through the engine. 

For instance, a branch based on condition codes will take two micro-cycles to get executed; 

a normal ALU operation will take only one. Any system that supports a delayed branch is, 

in effect, a skewed pipeline. 

Skewed pipes are useful when we want to have a small number of stages (to make it 

easier to handle data dependencies for example) and at the same time keep each stage very 

short. The penalty we pay is that "rare' operations will execute with an extra delay (like 

branches). In the case of Fig.12, we do not want to have more than two stag~s (one pipe 

latch) because of data dependencies. The un-skewed pipe has a cycle time of 130ns; the 

skewed version will execute instructions in an "average' of 110ns (the usual case executes 

in lOOns; branches require 200ns but only happen 10% of the time). Of course, if condi­

tional branches were more common, the skewed pipe would be the wrong choice. It is 

better to a have a single-cycle conditiOnal branch if there are many of them, even if this 

means increasing the cycle time slightly. 



FIG 12: A SKEWED PIPELINE 

30ns -1-
NEXT ADDRESS 
SEQUENCER 

lOOns 

MICROCODE 
MEMORY 

' 
lOOns 

ALU 

CCL 
CONDITION-CODE LATCH 
''SKEWS' ' THE PIPELINE 

ASSUME 10% CONDITIONAL BRANCHES 

NO CCL: CYCLE = 130ns; 1-CYCLE BRANCH 

WITH CCL:: CYCLE= lOOns 

2-CYCLE BRANCH (200ns) 

MICRO-WORD 
LATCH 

AVERAGE INSTRUCTION EXECUTION TIME: 

0.9*100+0.1"200 = 110ns 

THIS IS SHORTER THAN 130ns 

FOR ANOTHER WAY TO SEQUENCE THIS DATAPATH, 

USING A SHORT CYCLE TIME (33ns), 

PLEASE REFER TO TEXT 

26 



27 

Another possibility is to sequence this skewed pipeline with a very short cycle time. 

Each instruction can then use the minimum number of cycles required for its execution. 

For the example of Fig.l2, we could have a 33ns cycle time. Non-branch instructions exe­

cute in 3 cycles, while branches require four. In effect, by using a short and well chosen 

cycle time, we have finer control over the timing of data flow through the pipeline. In 

Fig.l2, a cycle of 33ns was chosen because the node delays are lOOns and 30ns. A value of 

33ns represents some form of greatest common divisor. 

OPD does not calculate such short "GCD" cycle lengths automatically. However, once 

the designer has chosen a suitable cycle time, this can be fed to OPD. OPD can then break 

the cycle up into phases (if required), determine how many cycles each instruction will 

require, and produce the reservation table for this pipeline. Finally, OPD can calculate an 

optimal initiation sequence for this table. 

The last task - calculating an optimal initiation sequence - can become quite complex 

with short cycle times. This is because the reservation table will spread over a great many 

cycles, and will have a rather irregular pattern. Short cycle times will therefore usually 

require more involved pipeline control logic. OPD helps the designer specify and synthesize 

this logic. 

1.4. Related Algorithms and Problems 

We show that the Microcode compaction problem (MC) [Fisher 81] is a subtask of SP. The 

objective of MC is to pack a sequence of elementary micro-operations into horizontal micro­

instructions so as to minimize the total execution time of the sequence by exploiting the 

parallelism available in the micro-engine. 

In order to calculate the length of a particular stage under resource limitations, SP 

has to pack the operations (nodes) in that stage so as to minimize the total stage time while 

satisfying the resource constraints. In order to calculate the length of a particular pipe 

stage, SP therefore has to perform MC for the operations within that stage. MC is there-



28 

fore a subtask of SP. [Fisher 81] shows that MC is NP-complete; he does this by showing 

that a constrained multiprocessor scheduling problem, known to be NP-complete [Coffman 

76], is reducible to MC. It then follows that MC, and therefore SP, are NP-complete. We 

now describe the algorithms used for SP. 

2. Optimization Algorithms for SP 

SP is done in three steps; the first step, optO, creates a starting-point stage partitioning; 

the next two steps, optl and opt2, iteratively optimize this partitioning to reduce the max­

imal stage length and the number of stage latch bits. 

OptO relies on the delays of the nodes in each stage to estimate the stage length. 

Optl and opt2 use a more precise cost function that actually schedules the nodes in each 

stage to calculate the stages length. 

2.1. Cost Function 

The cost function is made up of three terms: the length of the longest pipe stage, an extra 

term (called the share-term) to account for resource sharing between stages, and a small 

factor times the number of stage latch bits. 

In order to find the length of each stage m the presence of shared resources, it is 

necessary to schedule the operations of that stage while satisfying the resource limits. We 

use forward-urgency scheduling [Park 85] for this. Whenever two independent operations 

compete for a shared resource, the operation that is farther from the end of the stage gets 

the resource first. The distance of a node from the end of the stage is the l~ngth of the 

longest path from that node to the output stage latch. We know how far each operation is 

from the end of the stage by calculating the delay from that operation's node to the stage 

latch. Fig.l3 shows the forward-urgency-sched procedure along with an example. 

2.2. OptO Seed Algorithm 

OptO takes a target stage length as argument, and packs blocks into successive stages that 



FIG 13: FOR\VARD-URGENCY SCHEDULING ALGORITHM 

PROCEDURE FORWARD-URGENCY -SCHEDULE; 

THE INPUT IS A SET OF NODES ALL LOCATED IN THE SAME STAGE; 

STEP #1: CALCULATE THE FORWARD URGENCY OF EACH NODE 

(THIS IS THE DISTANCE OF THE NODE TO THE STAGE E="D-LATCH) 

29 

STEP #2: SELECT NODES IN TH STAGE BY ORDER OF DECREASING URGE]';CY; 

FOR EACH SELECTED NODE, SCHEDULE IT TO RUN AT THE EARLIEST TIME 

COMPATIBLE WITH THE PRECEDENCE CONSTRAI!'.'TS 

AND WHEN REQUIRED RESOURCES ARE AVAILABLE; 

END; 

EXAMPLE: THE GRAPH IS: 

c 
ASSUME 

A AND B SHARE SOME RESOURCE X 

RESOURCE X 

A IS SCHEDULED FIRST SINCE IT IS FARTHEST AWAY FROM E. 

A RUNS AT 
T=O 

RESOURCE X 
BRUNS AT T = 10 

C RUNS AT T = T(A) + 10 = 10 

(AFTER A HAS FINISHED USING 
tHE SHARED RESOURCE X) 



30 

are each shorter than the target length. OptO iteratively proceeds from the graph's root 

nodes (those with no fanin) towards the graph's tail nodes (those with no fanout), creating a 

new stage whenever the target length is reached. Fig.l4 shows how optO works. 

2.3. Optl Optimization 

Optl takes an existing stage partition and attempts to iteratively improve it; it does so by 

trying to move single nodes from one stage to the next or to the previous stage. After try· 

ing to move every boundary node, the best resulting partition is picked. Fig.l5 shows an 

example of optl. 

2.4. Opt2 Optimization 

Opt2 also takes an existing stage partition which it iteratively improves; it does so by an 

algorithm based on Kernighan and Lin's bipartition exchange algorithm [Kernighan 70]. 

Opt2 will successively move every operation node N 1 through Nit., located at a stage boun­

dary, to the next stage. it will then pick the best point k = kO such that the stage length 

reached by moving N 1 through N lt.O is minimal with respect to k. Opt2 then repeats this 

procedure, moving boundary nodes to the previous stage this time. Fig.l6 shows an exam­

ple of opt2. [Devadas 87] shows another application of the Kernighan and Lin algorithm to 

synthesis problems. 

The reason we have three algorithms is as follows. OptO finds a starting 

configuration. Optl performs optimization with respect to local motion of nodes across 

stage boundaries. As such, optl typically gets stuck in configurations that correspond to 

local minima for the cost function. On the other hand, opt2 attempts more drastic changes 

to the pipeline structure. Opt2 has the potential to get the search out of the kind of local 

minima that block optl. 

Therefore, we would normally call optO first. We would then iteratively call optl 

until a local minimum is found. At this point, we call opt2 to escape from the local 

minimum, and, hopefully, find a more promising configuration. We iterate optl on the new 



31 

FIG 14: OPTO OPTIMIZATION ALGORITHl\1 

PROCEDURE OPTO; 

END; 

INPUT: TARG (TARGET STAGE LENGTH) -t G (GRAPH TO PARTITION) 

OPTO PARTITIONS G INTO A SET OF CONSECUTIVE STAGES; 
THE LENGTH OF EACH STAGE IS<= TARG. 

OPTO STARTS OUT AT THE ROOT NODES (THOSE WITH NO FANIN) AND WORKS 

ITS WAY TO THE TAIL NODES (THOSE WITH NO FANOUT). ALONG THE WAY, 

OPTO CREATES NEW STAGES AS FOLLOWS. 

OPTO STARTS OUT WITH ONE (IMAGINARY) STAGE LATCH LOCATED JUST BEFORE 

THE ROOT NODES. 

GIVEN A STAGE LATCH, OPTO CREATES A NEW STAGE AS FOLLOWS. 
FIRST, OPTO WILL TRACE ALL THE PATHS FROM THE GIVEN LATCH TOWARDS 

THE TAIL NODES. OPTO WILL GO AS FAR AS POSSIBLE FROM THE GIVEN 
LATCH, SUCH THAT THE DISTANCE ALONG EACH PATH TO THIS LATCH IS<= TARG. 

SECOND, OPTO WILL CREATE A NEW STAGE LATCH WHICH CUTS THE GRAPH 

AT THE EXTREMETIES OF THE TRACED PATHS. 

THE NODES BETWEEN THE GIVEN AND THE NEW STAGE LATCHES FORM A NEW 

MAXIMAL STAGE WHOSE LENGTH IS<= TARG. 

OPTO THEN REPEATS THIS PROCEDURE, STARTING FROM THE NEW STAGE LATCH. 

OPTO STOPS WHEN THE TAIL NODES HAVE BEEN REACHED. 

EXAMPLE: 

NOTE: NUMBERS ARE DELAYS 
ALL PARALLEL PATHS ARE ACTIVE 

OPTO WITH TARG = 15 GIVES: 



FIG 15: OPTl EXAMPLE 

ORIGINAL PARTITION 

(O.P.) 

CYCLE TIME = 40 

LATCH (L) 

OPTl WILL TRY MOVING A,B,C TO THE OTHER SIDE OF (L) 

OPTl STARTS FROM O.P. FOR EACH MOVE: 

MOVE A=> 

CYCLE TIME = SO 

MOVE B => 

CYCLE TIME = 35 

MOVE C => 
CYCLE TIME = 25 

(L) 

A 

c 

G 
D 

® 

(L) 

D 

® 

OPTl WILL THEREFORE PICK (II), AFTER MOVING B. 

D 

® 

(I) 

(II) 

(III) 

OPTl WILL ITERATE THESE MOVES ONCE MORE. BUT WILL FIND NO IMPROVEMENT 

IN THE CYCLE Tlt-.1E ((II) IS OPTIMAL). OPTl \\'ILL THEN STOP. 



FIG 16: OPT2 EXAl\1PLE 

ORIGINAL PARTITIONING 

CYCLE TIME= 10 

OPT2 WILL TRY THE FOLLOWING CONFIGURATIONS AND PICK THE BEST: 

CYCLE TIME = 15 
CYCLE TIME= 15 

CYCLE TIME= 15 CYCLE TIME= 15 

33 

IN THIS EXAMPLE, THE ORIGINAL CONFIGURATION YIELDS THE BEST CYCLE TIME. 



34 

configuration until a new local minimum is found, call opt2 on it, and so on. We stop when 

consecutive passes of opt2 followed by iterations of optl yield no improvement in the cost 

function. Appendix 1 shows how optl and opt2 are used in sequence. We see that opt2 

helps the search escape from optl's local minima. 

2.5. Skewed Pipe Generation 

Skewed pipes are generated in two steps: we first pick a (regular) stage from latch S1 to 

latch S2 that is a good candidate for "skewing"; this is typically the longest stage. Next, 

we "skew" this stage by inserting a latch S' about half-way on the longest path of this 

stage. As Fig.17 shows, we then have a skewed stage such that the lengths of the three 

new component skewed stages (81 to S') and (8' to 82) and (81 to S2 with 8') are all strictly 

less than that of the original stage (81 to 82). As we mentioned, this is optional and espe­

cially useful to avoid long but rare operations (like branches) from slowing down frequent 

ones (like loads/stores). We now describe how the algorithms designed for 8P can be used 

to determine a set of phase lengths for sequencing the actual data path. 

3. The Phase Calculation Problem 

3.1. Problem Specification For PC 

The objective of PC is to break up the cycle into a set of non-overlapping phases such that 

these phases can be efficiently used to sequence the datapath gates and latches. The input 

to PC consists of the following items. 



FIG 17: SKE\YED PIPE EXA1\1PLE 

LATCH (Sl) SKEW-LATCH (S') 

I 
I 
I 
I 

CRITICAL PATH TROUGH STAGE 

WITHOUT SKEW-LATCH (S'): CYCLE TIME = 40 

WITH (S'): CYCLE TIME = 20 

35 

LATCH (S2) 

... SEE ALSO: FIG.l2 



MIN/PHIS 

TARGPHI 

DPATH 

The stage latches that correspond to the 

best partition found by SP 

The minimum number of phases in a cycle 

The target length for each phase 

36 

A description of the datapath used to implement the system 

along with the datapath's associated constraints. The format 

for DPATH is that required by the Phase Assignment step 

PA. The task of finding a suitable datapath is left up to the 

designer. OPD does not perform datapath synthesis. 

PC then calculates a set of at least MIN/PHIS phases such that the length of each phase is 

close to TARGPHI, and such that when these phases are used to "sequence' the above data-

path, the length of the longest pipe stage in minimized. The Phase Assignment routine, 

PA, decides how a set of phases is used to sequence the given datapath. 

3.2. Using SP To Solve PC 

We notice that PC and SP are very similar; the objective of SP is to break up a dataflow 

graph into stages; that of PC is to break up the cycle time, which corresponds to the length 

of one pipe stage, into phases. The cost function for SP is the length of the longest pipe 

stage; that of PC is the length of the longest stage after PA has calculated how to best use 

the given phase lengths to sequence the actual datapath. 

Because of this similarity, we re-use SP to solve PC. To map PC to SP, we first "fold" 

our dataflow graph. This step involves breaking the dataflow graph into the separate pipe 

stages found by SP; these stages are then placed in parallel to form the folded graph. The 

folded graph therefore has only one pipe stage, and the length of that stage is equal to the 

cycle time found by SP. 

We now run SP on PC, with a target stage length (an input of SP) equal to the target 

phase length we want. SP will then break up the folded graph into stages, where the 

length of each stage is close to our target phase length. By calling optO, opt! and opt2 on 

the folded graph, SP will generate a range of possible phase lengths. The cost function we 

use to evaluate a phase length sequence is the datapath's pipe throughput, as calculated by 



37 

the Phase Assignment routine after it actually sequences the datapath. This procedure 

requires that the datapath be re-sequenced by PA every time SP generates a new set of 

phase lengths. Fig.l8 shows the procedure. 

In effect, what we have done is to use the structure of the dataflow graph to generate 

a good set of phase length sequences via SP on the folded graph. We try out every 

sequence of phase lengths on the actual datapath via PA and pick the phase lengths that 

lead to the best results. 

The software has routines to fold the dataflow graph and automatically run PA; 

Appendix 3 shows PC at work on a CPU example derived from the RISC-H [Katevenis 83]. 

As we see from this example, it is not easy to find a good set of phase lengths solely from 

the dataflow or even the datapath graphs. One reason for this is that only certain phase 

length patterns may be suitable. For instance, the designer might want to have equal 

length phases. This is indeed the case with the RISC-H [Katevenis 83] [Sherburne 84]. 

Appendix 3 shows that, within this constraint, the phase length chosen by the original 

designers (120ns) is very close to the optimum. However, the sample runs in Appendix 3 

show clearly that when phases are used to sequence detailed MOS gates, there is no simple 

relationship between stage length and phase lengths. For example, slow gates may run 

over many phases, while many fast static gates could fit into the same phase. The relation­

ship between dataflow stages and phases is therefore very tenuous. 

Once the dataflow graph has been partitioned, and the phase lengths have been calcu­

lated, we can use the Phase Assignment tool (PA) once again to determine on which 

phase/cycle each gate of the datapath should be run. When PA was called from PC, we set 

control parameters for PAso that PA would run fast and produce an approximate result as 

a guide to the higher level PC task. This time, we can call PA to do a full-precision job. 

The next chapter describes how this is done. 



FIG 18: PHASE LENGTH CALCULATION 

(S 1) 

ORIGINAL GRAPH 

STAGE#2 STAGE#3 

0 FOLD (AUTOMATIC) 

STAGE#l 
IN ORIGINAL GRAPH 

"FOLDED" GRAPH -- -- ----

STAGE#2 
IN ORIGINAL GRAPH 

-- -- ----

STAGE#3 
IN ORIGIKAL GRAPH 

ONE CYCLE 

BY RUNNING SP ON THE FOLDED GRAPH. THE CYCLE IS BROKEN UP INTO 

A SET OF PHASES. 

EACH SUCH PARTITION IS USED TO SEQUENCE THE ACTUAL DATAPATH VIA PA. 

PA THEN TELLS US HOW FAST THE PIPE WILL RUN WITH THIS SET OF PHASES; 

WE PICK THE BEST SET OF PHASES GENERATED BY SP. 



39 

Section III - Phase Assignment 

PAis the next tool in the OPD set, and performs Phase Assignment on datapath gates. In 

this chapter, we define the Optimal Phase Assignment (PA) problem. We use the Micro­

code Compaction problem [Fisher 81] to show how to prove that PA is NP-<:omplete. We 

then examine related problems and algorithms, and discuss and evaluate two approaches 

for solving PA. The first one is probabilistic and uses Simulated Annealing (SA). We dis­

cuss how we applied SA for solving PA, and use an analogy with physics to discuss some of 

the tradeoff's involved. We cover the annealing cost function, the move generation and the 

choice of the annealing control parameters. The second approach is heuristic, and leads to 

a fast algorithm for solving PA. 

The main purpose of the Simulated Annealing algorithm is to produce high-quality 

reference solutions for a few examples. We use these solutions to demonstrate the 

effectiveness of the much faster heuristic algorithm. The long run-time of SA is therefore 

not a problem in our case. 

We also show that the constraint set chosen for PA is powerful enough to capture 

most usual design situations. 

1. Problem Specification 

1.1. Input 

The input to the PA optimization problem consists of a register-transfer level description of 

the circuit, plus a description of the clock and the pipeline stages. The input consists of the 

following elements. 

39 



Bi (i=l, .. ,N) 

TYi (i = l, .. ,N) 

Di (i = l, .. ,N) 

DAG 

Li (j = l, .. ,P) 

Constraints 

40 

A set of N interconnected blocks (gates and latches). A 

block is simply an operator; it can be as simple as a logic 

gate, or as complex as a whole processor. 

The type of each block (static logic gate, dynamic, domino, 

nora, latch) 

The propagation delay of each block expressed in the same 

units used to specify the lengths of each clock phase. 

A Directed Acyclic Graph that expresses the connectivity 

among blocks. We show later how common causes for cyclic 

connectivity graphs can be worked around. 

The length of each clock phase. There are P phases. These 

lengths are calculated by PC. 

For each one of the S pipeline stages, STl~t is the input latch 

to the stage, while ST2k is the output latch. The stages 

could, for instance, be those calculated by SP. Since stages 

are consecutive, STllt+ 1 is the same latch as ST211 • 

There are 5 types of constraints. It is possible to force a block 

to run on a particular phase, to make a set of blocks run on 

the same phase, to force a set of blocks to run on disjoint 

phases, or on different starting phases, and to make pipeline 

stages run at non-overlapping times (so as to allow resource 

sharing, for example). 

Appendix 2 describes the input and the output format for PA. Appendix 2 also shows two 

examples, a small test case and a datapath example derived from the "fraction datapath" of 

the SPUR [Patterson 87] [Hill 85] Floating Point Unit [Adams 86]. 

1.2. Optimization Objective 

PA does not modify the datapath or the stage partitioning since those tasks have already 

been performed earlier during the design by the designer and SP/PC. The objective is to 

assign a clock phase to each block so as to maximize the throughput of the pipeline subject 

to all given constraints. In fact, the program assigns a fire time F, (i = l, .. ,N) to each block 

Bi. The fire time is the absolute time when the block can start evaluating. For a static 

block, this is the time when the inputs are ready. The precedence constraints imply that: 

For any blocks B, and Bi such that there is an arc from B, to B; in the connectivity 



41 

DAG, we should have F, +D, sFr This ensures that the inputs to Bj will be stable 

when it uses them. 

The objective of maximizing the pipeline flow rate is replaced by the simpler aim of minim-

izing the longest stage length. This objective was chosen because the time spent in the 

slowest stage is often what limits the overall throughput. The simplified objective can be 

expressed as: 

Minimize the Max of the difference between the fire time of the output latch minus 

the fire time of the input latch for each pipe stage, over all the pipe stages. or: 

•=s[ ] 
Minimize Max FsT2<k>-FST1<k> 

•=1 

1.3. Related Optimization Problems and Algorithms 

The Micro-code compaction (MC) problem [Fisher 81] can be reduced to PA. 

In order to solve MC using PA, we map each micro-op to a block whose delay is equal 

to the time taken to execute that micro-op. We use the connectivity DAG to specify the 

precedence constraints among micro-ops. We can describe resource conflicts among micro-

ops by introducing a constraint that specifies the blocks that should not be simultaneously 

used. For example, if the micro-engine has only one adder, we would create a constraint to 

specify that two ADD blocks should not be used at the same time. Lastly, we define a sin-

gle pipeline stage that corresponds to the total execution time. This mapping of MC to PA 

can be done in polynomial time. 

An optimal solution to the corresponding PA problem will produce an optimal packing 

of the micro-ops into horizontal micro-instructions. MC is therefore reducible to PA. As we 

mentioned earlier, MC is NP-complete. It therefore follows that MC and PA are both NP-

complete. 

However, it is difficult to use micro-code compaction algorithms directly for PA. Most 

such algorithms optimize in a fairly local way, such as [Landskov 80], performing code 



42 

motion mainly within basic blocks. Those that apply global reorganization [Fisher 81] rely 

on the structure of typical micro-programs in order to achieve fast algorithms. This makes 

them less applicable to PA. 

PA is also analogous to a one-dimensional constrained multi-layer compaction prob­

lem. To see this, we map each logic block Bi to a line of length Di, the delay of the block. 

The absolute x-coordinate of the line in the layout Xi corresponds to the fire time Fi of the 

block. We also create as many layers as there are pipeline stages, and map all the blocks 

in one stage to the corresponding layer. The objective of minimizing the max stage length 

then maps to one of minimizing the layout size, subject to the ordering relation specified by 

the connectivity DAG. Our constraints map into layout constraints that are somewhat 

bizarre; for instance, firing a block on the fixed phase <P1 maps into placing the line such 

that its x-coordinate is an integer multiple of some quantity (the cycle time). Moreover, 

some of the constraints in PA are global - while layout compaction is a local process. This 

is why it is difficult to apply standard layout compaction algorithms such as [Hsueh 81] 

[Weste 81] to solve PA. 

A typical circuit might have a hundred blocks, with a total cycle time of 500 units (for 

ex. 500ns). There might be about 50 or 100 constraints; this gives us a search space with 

one hundred dimensions. Of course, the constraints reduce this number. 

The large search space is the main reason why integer programming techniques, such 

as those used by [Leiserson 83] for retiming, were not chosen for PA. Dynamic Program­

ming can not be applied since the Principle of Optimality, as described in [Horowitz 84] p. 

199, is not satisfied by our problem. 

2. Simulated Annealing Based Phase Assignment 

2.1. The Generic Algorithm 

Simulated Annealing (SA) [Kirkpatrick 83] is a general search technique suitable for solv­

ing constrained multi-variate optimization problems In the case where there are no 



43 

constraints, the objective is to minimize a given function F(:rt. ..• xN), where each variable :r, 

belongs to a domain D,,i = l,N of possible values. 

SA works by establishing a physical system that is analogous to the problem. Such a 

system is described by giving its state vector r= (:rt>···.XN) and its energy function E(X). We 

can think of this system as being a crystal, for instance. It is possible to find a state of 

minimal energy for a physical system by using the (physical) process of annealing. First, 

the crystal is melted by heating it up; the energy E is then high, the state xis random. 

Then, the crystal is progressively cooled (annealed); the temperature T is reduced by small 

steps, waiting for thermal equilibrium at each temperature. Finally, when T is low 

enough, the crystal settles into a stable state of minimal energy. 

If we consider our x to be the state vector of a physical system whose energy function 

is E = F(X), then we can minimize F by simulating the physical annealing of the crystal. 

Of course, we also need to introduce a parameter T, that is the analogue of physical tern-

perature. 

This simulation is performed via the Metropolis algorithm [Metropolis 53], which was 

used in the early days of scientific computing to simulate many-bodied physical systems in 

equilibrium at a given temperature. This method determines the expected values of vari-

abies of the system at a given temperature T by generating a set of states S t.S 2, • • • that 

are representative of the system's behavior at T. The variables are then averaged over this 

set of states. The states are generated one by one. A new state S' is generated from the 

previous state S by randomly changing one of the state variables and calculating the 

change in energy !:J.E that would result; the new state is then entered into 'the set of 

f.E 

representative states with a probability equal to the Boltzmann factor e ItT, or 1 if !J..E ::s 0 . 

. The first state to enter the set can be random. Fig.l9 outlines the SA algorithm and the 

Metropolis technique. To cool the system, T is multiplied by the cooling factor a, usually 

chosen such that 0.8 ::Sa< 1. 



FIG 19: GENERAL SA ALGORITHM 

procedure SA; 

I* for ·each temperature */ 
while outer-loop-criterion not satisfied, do 

I* do the Metropolis simulation */ 

while inner-loop-criterion not satisfied, do 

generate move at random; 
evaluate A.E for move; 

if AE <0 accept move; 
M. 

else if e --y > RO_l accept move; 
I* RO_l denotes a random number between 0 and 1 *I 
else reject move; 

if move was accepted, update configuration to new state; 

end while; 

I* end of Metropolis simulation *I 

I* update Temperature Temp to cool system; *I 
T = T*a; 

end while; 
end SA; 



45 

SA is therefore characterized by three procedures: 

• The Move Generator, which decides which variable should be randomly changed, 

and to what value, in order to generateS' from S; 

• The Inner Loop Criterion, which decides when enough representative states have 

been generated at a given temperature to ensure that the Monte-Carlo Metropolis 

simulation truly reflects the physical state of the system in thermal equilibrium at 

T· 
' 

• The Outer Loop Criterion, which decides when the system has been cooled to a 

sufficiently low temperature. 

In the physical process of annealing, it is necessary to cool the substance very slowly to pro-

duce a proper crystal. If the cooling is too rapid (quenching), the substance may enter a 

metastable state that corresponds to a local minimum of the energy. This local minimum 

can be quite far from the global minimum. The number of variables required to describe a 

physical system may be of the order of Avogadro's number, or 1023 = 277
• Moreover, the 

number of states generated per temperature for each variable can be estimated by taking 

the ratio of the time needed by the crystal to attain equilibrium at a fixed temperature 

divided by the characteristic vibration frequency of the crystal lattice. This ratio may be 

hours or days divided by pico-seconds, or roughly 1015 = 250
. 

It follows that, in practice, the SA algorithm can not perform a true simulation of the 

physical process of annealing. Even with the fastest CPU's available, it is very difficult to 

generate more than a few hundred states per variable per temperature. One reason why 

physical crystals can go through so many states in a fairly short time (hours) is that the 

crystal is a highly parallel analog computer, with 1023 or so atoms working together, and 

the clock cycle is very fast (picoseconds). 

Practical SA implementations can make up for the small number of moves by generat-

ing them in a smart fashion, so as to rapidly go through a set of representative states. In 

particular, it is pointless to generate moves that will systematically be refused. We want 



46 

to generate moves that result in a value of 6.E that is negative or not too large compared to 

T. This ensu.es that the p•obability of aocepting the new state, given by min[l,e- ",:'] is 

not minuscule. Using such techniques, SA provides a robust search method that is capable 

of getting out of local minima by accepting uphill moves with a probability given by the 

Boltzmann factor. 

To handle a particular constraint in SA, we add a corresponding term to the objective 

function F to be minimized. This term C is a penalty function, and takes on large positive 

values when there exists a constraint violation. At high temperatures, SA will therefore 

explore configurations that do not meet some of the constraints, since ~ will be small 

dE 

even if AE is large. This leads to a value of e T that is large enough to accept the state, 

even if there is a constraint violation. However, as T decreases, the system will refuse 

moves that increase C, and settle in a state that minimizes F + C, thereby avoiding con-

straint violations. The other approach is to generate the moves so as not to cause con-

straint violations. 

We now discuss how we have used SA to solve the PA problem. We cover the choice 

of the energy function, the move generation, and the annealing control. 

2.2. Energy Function and State 

In our use of SA for PA, the state of the system is defined by the vector FT = (F 11 .. ,FN) of 

the fire times of each block. We take the penalty function approach to ensure that the 

given constraints are met by the final solution. 

2.2.1. Basic Terms 

The Energy function F(FT) has three terms: 



SL 

ST 

PEN 

47 

F(F'f> = SL + ST + PEN 

The slack cost, proportional to the sum of the squared signal slacks. 

The slack on a signal that connects the output of one block A to the 

input of another block B is the amount by which we could delay the 

output of A and still have the value ready before B fires. 

The stage length term, proportional to the sum of 

the squared length of each pipe stage. 

The penalty function, to ensure that constraints are met. We have 

different penalty terms for each type of constraint; in general, the 

penalty function is equal to a constant plus the square of the 

amount by which the constraint is violated. For instance, for a non­

overlap constraint, the cost would be a constant plus the square of 

the overlap time between the concerned blocks. If the corresponding 

constraint is met, the penalty is zero. 

The terms are therefore calculated as follows: 

SL sLscale*sum slacks 2 

ST sLscale*sum (stage lengths)2 

PEN pen_offset + pen_scale*(amount of violation)2 

(only if the corresponding constraint is broken). 

Note: we have one PEN term for each (broken) constraint; 

we sum all these terms into the cost function. 

sLscale, sLscale, pen_scale are scaling factors. pen_offset is chosen to ensure that all con-

straint violations will be removed at T = 0. 

2.2.2. Balancing Cost Function Terms 

The choice of the offset and of the scale factors for the various terms in the cost function 

heavily influences the optimality of the final solution. 

If one of the energy terms is much larger than the others, then that term will dom-

inate the annealing process at high temperatures. For instance, if we have a very large 

stage length term, the SA algorithm will concentrate on minimizing the stage length at 

high T, while it will try minimizing SL and PEN only at lower temperatures. In effect, if 

the cost function terms are unbalanced, the minimization objectives are separated according 

to temperature. The algorithm will therefore not minimize all the criteria simultaneously; 

this generally leads to sub-optimal solutions. 



48 

We tried a very large ST term, and found that, at high T, SA decided to crush the 

stage lengths down, even at the expense of breaking certain constraints. As T decreases, it 

might turn out impossible to remove the constraint violations. On the contrary, if the 

terms are well balanced, SA will simultaneously optimize for all the criteria. This requires 

slower cooling, but produces better results. 

In order to choose well balanced factors, we reason on the physical system that SA 

simulates. Since the energy functions are of the form x2, this system consists of a set of 

blocks interconnected by perfect springs. The scale factors correspond to the stiffness of the 

springs. Fig.20 shows the equivalent system. We see that the stage term springs connect 

very distant blocks, while the slack term springs tie up neighboring blocks. Similarly, the 

penalty function terms are short range, since they tie a block to the nearest slot that does 

not violate the constraint. We want the forces exerted by the springs to be reasonably bal-

anced, so as to avoid crushing the system. 

From this analogy, it is immediately clear that the penalty offset pen_offset should be 

larger than the amount by which the slack term could be reduced by allowing constraint 

violations: 

pen_offset > slack,jCconstrained)- slack,i(unconstrained) 

for any single constraint violation. This ensures that those springs will not crush the 

blocks and make them break constraints. 

A set of slack term springs in series is connected to a single stage term spring. Typi-

cally, there as many slack springs in series as blocks per stage, bLst. Since bLst springs 

in series have a combined stiffness equal to -bll times that of a single spring, ~e need to 
_st 

weaken the stage term scale factor. This ensures that the stage term will not crush the 

blocks and cause precedence violations. Using this model and experimentation, we arrived 

as the following energy function factors. These factors do not account for blocks in parallel; 

this omission can be overcome by more conservative annealing parameters, which leads to 

longer run times. However, this was not a problem in our case since we used SA only to 



FIG 20: PHYSICAL EQUIVALENT OF PA 

NOTES: Bi ARE THE BLOCKS 

Ki ARE THE SPRING STIFFNESSES 

U ARE THE LATCHES 

LATCH Ll 

B2 

.----, B4 

Kl 

.· ...• ·.·· .... ·.·.... ' .·· ........... · ... · .. · 

STAGE= FROM LATCH (Ll) TO LATCH (L2) 

Kl =STAGE SPRING 

K2 = LOCAL CONSTRAINT FOR BLOCK B2 

K3 = PRECEDENCE CONSTRAINT 

SERIES SPRING NOTE: 
~--- N 

I~--- -----f2Z1----+ 
K K K 

OVERALL K = N. K 

49 

LATCH L2 



produce reference solutions. 

Parm Value 

sLscale 1 

sLscale 
1 

VbLst 
pen_offset (dynamic) 

pen_scale 

2.3. Move Generation 

Why 

Reference Factor 

avoid crushing blocks 

50 

should exceed the reduction in the slack and 
stage cost functions that is achieved if we can 
gain one clock cycle by breaking constraints. 

the stiffness of these springs should be bLst 
times greater than that of the stage length 
term springs to avoid precedence violations. 

We describe three flavors of move generation, from random to smart, heuristic move gen-

eration. 

For random move generation, we select the blocks sequentially, and displace each 

block by generating a new, random fire time. The move generation is fast, but this results 

in a less effective generation of useful moves than if exchange moves are used, as in the 

PLA-folder genie [Devadas 86]. PA is more similar to placement problems [Sechen 85] 

than it is to permutation problems such as the Traveling Salesman Problem [Kirkpatrick 

83]. While annealing can rapidly solve the Traveling Salesman Problem with thousands of 

cities [Kirkpatrick 83], it takes much more CPU time to solve thousand-block placement 

problems. 

The Range Limiter mechanism helps generate more useful moves. At low tempera-

tures, only local moves that do not perturb the system too much will be accepted. We 

therefore generate new fire times that are within a specified range of the old ones. As the 

cooling progresses, we reduce the extent of this range. In our SA, the range is reduced so 

as to ensure that at least 5% or 10% of the generated moves are accepted. 

We experimented with a move generator that never broke precedence constraints. 

However, we found that this lead to sub-optimal solutions, or to no solution at all in some 

cases. SA tends to get stuck in illegal or sub-optimal solutions from which it can not 



51 

escape if precedence constraints are always satisfied. 

We also tried another approach to respecting the precedence constraints. We re­

schedule a large part of the network each time a (random) move that breaks precedence is 

generated. We found that SA had trouble gauging the effect of any one move. This is 

because every move is followed by a heuristic procedure that may re-organize large parts of 

the circuit before generating the next move. We also experimented with a move generator 

that always satisfies a larger set of constraints (all local constraints). But the different con­

straints interact, and such an approach prevents SA from considering them all. 

A better way might be to anneal only on the global (scheduling, non-overlap) con­

straints and use heuristic algorithms to re-assign phases each time one of the scheduling 

constraints is changed. However, since our main purpose in coding SA was to generate 

reference solutions to validate faster heuristic algorithms for PA, the long run times did 

not appear to be a problem. 

2.4. Annealing Control 

Annealing control refers to the inner loop criterion, the outer loop criterion and the choice 

of parameters. 

The inner loop criterion decides when a sufficient number of states have been gen­

erated at a given temperature. We have shown that it is not practical to generate as many 

states as in the physical annealing. In practice, we generate a fixed number NS(T) of 

states per block per temperature. NS (T) is on the order of 100 to 300. This implies that 

we do not test, and therefore do not wait, for thermal equilibrium. In fact, t~e curve in 

Fig.21 shows clearly that we do not come anywhere close to equilibrium. The correct 

energy function - had we waited at each T - is a monotonically decreasing function of T. 

The fact that the energy can sometimes go up as T goes down shows that the Monte-Carlo 

Metropolis simulation is not exact. This scheme is similar to that used by the placement 

package TimberWolf [Sechen 85] and the PLA-folder Genie [Devadas 86]. 



0 

ENERGY•l0"6 

VERSUS 
TEMPERATURE.10"6 

~ 
~ 

lJ 

Mil 

i lA 

m 

II 

II 

FIG 21: ENERGY (COST) VS. TEMPERATURE 

ANNEALING - FPU RUN 

A A 
"'J 

N 

\ ) 
I \I 

FIG 21: ENERGY VS. TEMP (FPU) 0 -x- le+07 0 -y- le+08 

2 4 6 

52 

A 

\ 

\ 

I 

8 10 



53 

We ran an experiment in which we waited for the average energy to stabilize at each 

temperature before cooling. This is somewhat analogous to achieving thermal equilibrium. 

We found that NS(T) increased roughly by a factor of 10. E(T) also became a monotoni­

cally decreasing function. However, the quality of the results did not improve enough to 

justify a ten-fold increase in computing time; we therefore use the non-equilibrium scheme. 

In order to improve the quality of the final solution, we increase NS(T) as T 

decreases. It is sufficient to generate a small number of states at high temperatures since 

the system is in a random configuration anyway and since SA is only performing an 

approximate exploration. However, as the system is cooled, it becomes useful to generate 

more states in order to evaluate the energy with greater precision. In our implementation, 

we divide NS(T) by the cooling factor a when the fraction of accepted moves drops sud­

denly. Such a situation occurs when the energy is rapidly changing, corresponding to a 

phase transition in the system. It is then desirable to generate more states to observe this 

transition better. 

The outer loop criterion is simple. If the energy has not changed appreciably over the 

last three temperatures, we stop the annealing process. This criterion has proven useful in 

TimberWolf [Sechen 85]. 

In practice, we found that NS(T) should be greater than 150 generated states 

(accepted or refused) per block per temperature. Also, the offset term pen_offset for the 

penalty function should be just large enough, but not more. The best results are obtained 

with a 2: 0.90 to ensure slow cooling. We also found that both NS(T) and T have to be 

much higher if the problem involves global constraints. Other annealing-base"d programs 

also have trouble with global constraints; for instance, placement packages using SA are 

not well-suited to regular, highly-constrained datapath placement. For such problems, the 

choice of annealing parameters is very critical. For the SPUR FPU and an example 

derived from the RISC-11 [Katevenis 83] [Sherburne 84], run times are about 0.5 to 1.5 

hours of VAX8800 CPU. Our main aim in coding SA is to verify the solutions produced by 



54 

heuristic algorithms described next. In both cases, SA did not find a significantly better 

result than the heuristic algorithms. Fig.22a and Fig.22b show how the move generation 

range and the number of moves generated vary with temperature. There is a noticeable 

phase transition around T = 105, as evidenced by a rapid decrease in the range of those 

moves that the annealing generates. The program adjusts this range in an attempt to 

ensure ,that at least 5% or 10% of the moves generated are accepted. The rapid decrease of 

this range takes place because the program is responding to a rapid decrease of the 

system's randomness. The system is suddenly "solidifying". 

2.5. Coding Issues 

In order to ensure reasonable run times, we calculate the energy functions in an incremen­

tal fashion. Every time a move is generated, we re-calculate only those terms that change 

in the energy function. To achieve this, we use data structures that immediately tell us 

which constraints and which terms depend on a particular block's fire time. Also, much of 

the annealing code is inline - a compiler that could automatically expand functions inline 

would be very helpful here. It is worth avoiding function calls in the critical loop since this 

loop may be executed several million times. 

In order to debug the annealing code, we compare the energy as calculated incremen­

tally with the energy re-calculated at every accepted move. We found the direct calculation 

of the energy to increase compute time by about a factor of 10. Overall, our annealing code 

was more difficult to debug than usual because of the need for very high speed, its exotic 

data structures, and a rather long critical loop. 

3. Heuristic Algorithms for Phase Assignment 

We describe heuristic algorithms that provide good solutions !'apidly, within seconds for 

typical problems. Such algorithms make it possible to use OPD interactively. These algo­

rithms are built upon GPA, a Greedy Phase Assignment algorithm. 



500 

400 

300 

200 

100 

0 

FIG 22(a) 

NUMBER OF MOVES PER BLOCK AT EACH TEMPERATURE 

VERSUS 

LOG (TEMPERATURE) 

\ 

PHASE 
TRANSITION 

-

FIG 22(a): IMOVES PER BLOCK VS LOG(TE~2) 0.1 -loq x- le+07 0 -y- 500 

T=O.l T=l T=lO T=lOO 

55 

I 

\ 
1\ 

I 



FIG 22(b) 

RANGE OF ANNEALING (MAX RANDOM DISPLACEMENT OF A BLOCK'S FIRE TIME) 

VERSUS 
LOG (TEMPERATURE) 

l 
I 

-~ 
FIG 22(b): RANGE VS. LOG(TEMP) 0.1 -log x- le+07 0 -y- 2500 

T=O.l T=l T=lO T=10"5 

56 



5i 

3.1. GPA: Greedy Phase Assignment 

The basic GPA performs either a breadth-first or a depth-first trace of the network. Each 

block is assigned the earliest fire time that meets all the constraints involving it. Con­

straints that refer to blocks that are not yet scheduled are ignored. GPA using depth-first 

search guarantees a solution if there exists one; this is because any constraint can be met 

by delaying a set of blocks sufficiently. 

3.2. HA: Heuristic Algorithm 

There are two reasons why GPA often produces sub-optimal solutions. GPA may schedule 

a block to run too early, which can force other blocks to be delayed in order to meet the 

constraints. This leaves dead slack in the network and decreases throughput. Also, global 

constraints such as specifying that two stages A and B must not overlap in time can have 

two valid solutions. Either all the blocks in A can run before any block of B, or the 

reverse. GPA, by its nature, does not consider any such exchange moves between indepen­

dent blocks. 

Fig.23 outlines HA. HA visits each block B in the network level by level, using 

depth-first ordering. For each B, HA tries NTRIALS consecutive possible fire times. For 

each possible fire time, HA calls GPA to re-schedule the part of the network that topologi­

cally follows the block. The fire time for B that produced the best schedule is selected. 

HA therefore re-schedules, on the average, half the network for each block. The run 

time grows as the square of the size of the network. HA is capable of delaying a block's fire 

time to find a better schedule, and can consider the interchange of independent blocks by 

delaying one of them by a sufficient number of phases. HA attempts to pack stages that 

should not overlap in as compact a fashion as possible; however, should this packing fail, 

HA switches to an algorithm that guarantees a solution but might decrease throughput. 

This algorithm delays all the blocks of one of the stages to ensure non-overlap. 

The mechanism that HA uses to maintain a global view of the network is similar to 



Figure 23: Heuristic Phase Assignment Algorithm HA 

{ Picks best fire time for a given block B. Tries NTRIALS different times } 

procedure ONE-HA (integer NT RIALS, block B) 

letT = earliest fire time for B consistent with constraints; 

for I from 1 to NTRIALS do 

unschedule all blocks topologically following B; 

{Try scheduling B after T, by the Greedy scheduler} 

{This move checks if a better solution results by delaying B } 

call GPA (block = B, min-fire-time = T); 

{ re-schedule that part of the network which topologically follows B } 

schedule all other blocks on the same DFS level as B 

and following B by calling G P A on them; 

if this is a solution that meets all constraints, record it. 

let T = next sensible fire time to try for B; 

end for; 
Pick the best found solution: this gives the fire time for B; 

end ONE-HA; 
{Note: the run time of ON A-HA is proprotional to Network-size* NTRIALS } 

{ Finds a good assignment for the whole network } 

procedure HA (NTRIALS); 

for each block B of the network in topological DFS order, 

call ONE-HA (B, NT RIALS); 

{ Note: this progressively fixes the fire time of each block. 

The network is in effect "zone-refined". 

} 

If no solution found, switch to a guaranteed algorithm. 

end HA; 
{Note: the run time of HA is proprotional to (Network-size"2) * NTRIALS } 

58 



59 

the Zone Refining (ZRJ process, as applied to compaction problems [Shin 86]. Unlike ZR, 

HA has to re-process the whole part of the network that follows the point of change every 

time a zone gets changed since constraints can be global. Run times are usually of the 

order of a few seconds. 

Fig.24 shows how the quality of the solution improves with NTRIALS. 

3.3. Other Heuristics Considered 

In order to handle global scheduling constraints, we considered using urgency-scheduling 

[Park 85]. This method orders blocks according to their distance to the end of the network 

(forward-urgency) or from the start of the network (backward-urgency). The distance of a 

block to the end of the network is the length of the longest path from that block to a termi­

nal block. 

Urgency-scheduling consists of scheduling the blocks with the highest urgency first. 

This method was not chosen because the local constraints interact with the global ones; and 

urgency-scheduling has no mechanism to explore these interactions. [Park 85] describes 

applications of urgency-scheduling to synthesis problems that do not involve as many con­

straints as ours. 

Another approach, used by A. Parker in the datapath synthesizer MAHA [Parker 85], 

is to schedule the blocks according to their freedom [Nagle 81]. Loosely, the freedom of a 

block is the difference between the earliest time at which it can be scheduled and the 

latest. Freedom-based scheduling was not chosen for similar reasons. 

Local operations to "shake' the network appear insufficient, since these canhot explore 

global interchanges while respecting the constraints. 

4. Constraint Set Completeness 

The constraint set is designed to capture most of the common hardware and scheduling con­

straints, so as to adapt to any technology and any design style. 



560 \ 

' 

550 

s..;o 

530 ; 

52 r 

510 

NTRIALS=O 

FIG 24 

SOLUfiON QUALilY VS. NTRIALS 

(HEURISTIC PHASE ASSIGNMENT) 

I 
I 

\ 

\ 

2 

SOLUTION COST 

VERSUS 

NTRIALS (SEE TEXT) 

4 

60 

. 

6 8 10 



61 

• Shared Resources: busses, register files, ALUs. Fig.25 shows an example. Shared 

resources are modeled as follows. Let RESC be a shared resource. We create 

blocks RESC h ... ,RESC N for every use of this resource. We introduce an extra con­

straint to force all these instances of a use of RESC to fire on the same phase, but 

at non-overlapping times. This constraint reflects the fact that two instances of 

RESC should not occur at the same time, but will however occur at the same 

phase (but different cycles) since they share the same hardware clock line. The 

constraints can also be used to describe datapaths with fixed loops. These loops 

correspond to a block being re-used. Such loops can be unrolled. 

• Precharge schemes: fixed-phase precharge (the same phase is used for precharging 

all the gates), per-gate variable precharge phase, and intermediate schemes can be 

described. Chained dynamic and domino or nora gates can be handled too [Weste 

85]. To handle chained dynamic gates, we create constraints to specify that a gate 

should not run on the same phases as a gate that it fans out to. To handle 

precharging, we first create a 'precharge' block for each precharged gate. This 

block fires when the associated gate is being precharged. We then specify that a 

gate G and its "precharge' gate P should not run on the same phase. This reflects 

the fact that a gate should not be precharged while it is being used. Moreover, if 

all the gates should be precharged on a common precharge phase, we simply 

specify that all these 'precharge' blocks should run off a common (and perhaps 

fixed) phase. 

• Delays that depend on the input/output pair: such gates can be handled by adding 

dummy "delay" blocks. 

The output from PA therefore specifies exactly when each gate and each latch will be 

clocked; this output precisely defines the length of each pipeline stage. PA can generate a 

reservation table in the file format required by SCHED. SCHED can then calculate an 

optimal initiation sequence [Kogge 81] for the pipeline. 



FIG 25: l\10DELLING SHARED RESOURCES FOR PA 

Ll,U U,L4 

Fl,F2 

RESC 

LATCHES 

LOGIC BLOCKS 

THE SHARED RESOURCE 

RESC IS SHARED BY STAGES (Ll,L2) AND (L3,L4) 

DATAPATH LOOP 
RESULTISG FROM RESOURCE 
SHARII"G 

(Ll) (L2) (L3) 

Fl F2 

r+-

PRESC~ 

A CORRECT WAY TO MODEL RESOURCE SHARI!\'G FOR PA 

BY Ul'\ROLLIJ'\G THE DATAPATH LOOP 

RESC IS Dt:PLICATED; EACH COPY 

CORRESPO~DS TO ONE USE OF 

THE ORIGI!\'AL RESC. 

CONSTRAI~T: RESCNI A.."'D RESCK2 

MUST R1..1N 01' THE SAME CLOCK PHASE, 

Bl.."T DURING DIFFERENT CYCLES. 

(Ll) 

J Fl 

I 

4RESC 
#1 

(L2) (L3) 

I "' "' -"' F2 

J 

RESC 
1- #2 

62 

(L4) 

r+-

(L4) 

~ 

r-



63 

Section IV - Reservation Table Scheduling 

This section describes a scheduling procedure from [Kogge 81] that determines an optimal 

initiation sequence for a pipeline. The throughput of a pipe does not depend exclusively on 

the length of the longest stage; it depends on the exact pattern of stage lengths, that is, 

how many clock cycles each stage requires. After PA, we know this exact pattern. We can 

therefore now determine exactly when new data should be allowed to enter the pipe so as to 

maximize the average processing rate. 

It can be quite difficult to find a good initiation schedule by hand. This is because the 

pattern of stage lengths found by PA can be irregular, with stages requiring different 

numbers of cycles to complete. With such complex patterns, it is not easy to manually 

determine when new data should be allowed to enter the pipe in order to maximize the pro­

cessing throughput. PA tells us how long each stage is; however, PA does not produce the 

optimal new data entry times. 

1. Scheduler Overview 

The scheduler takes a static reservation table as input. It calculates an initiation sequence 

that maximizes the throughput. The optimal initiation sequence can turn out to be fairly 

irregular; it need not be cyclic with respect to the compute time of the reservation table. 

1.1. Static Reservation Table 

The initiation sequence specifies when new data should enter the pipe. The input to 

the procedure is a reservation table, which specifies which pipeline stages are used by a 

particular computation, for how long and in what sequence. Two examples from [Kogge 81] 

are shown in Fig.26. 

63 



Stage 1 

2 

3 

Stage 1 

2 

3 

Time 
0 1 2 3 4 5 6 

A A 

A A A 

A A A 

Compute time = 7 

(a) 

Time 
0 1 2 3 4 5 6 7 

B B B B 

B B 

B B 

Compute time = 8 

(b) 

Figure 26 Sample reservation tables 

1.2. Reservation Table Generation 

64 

An exact reservation table, that takes into account all the hardware constraints, can 

be generated by PA after the Phase Assignment step has been done. Given this reservation 

table from PA, the scheduler will try to avoid collisions in order to maximize the pipe 

throughput. The performance is based on the MAll defined in the next section. 

1.3. Latency 

A key parameter in determining the performance of a pipeline is the initiation inter-

val, or number of time units separating two initiations. An initiation takes place when a 

new datum enters the pipe. Since the goal of a pipe is to maximize throughput, the prime 

measure of actual system performance is the initiation rate, or average number of initia-



65 

tions per clock unit. The average initiation interval is the reciprocal of the initiation rate, 

or the average number of time units between two initiations. We are looking for the MAil 

or the minimum average initiation interval. 



iaput 

Output 

Output 

(al ibi 

IDput 

Output 

Output 

(cJ !dl 

Fig. 27 sample pipeline 

(a) and (b) for reservation table B 

(c) and (d) for reservation table A 

2. Scheduling Algorithm 

66 



67 

2.1. Strategy 

A greedy strategy is not optimal since, if a datum is allowed to enter the pipe too 

early, this may block further initiations and actually increase the MAil. The algorithm we 

use is exhaustive and finds the best solution. The algorithm also runs fast by using various 

techniques to effectively prune the search tree. 

A bound on MAli can be determined from the reservation table alone according to the 

following lemma: 

2.1.1. Lemma (Shar 1972) 

For any statically configured pipeline executing some reservation table, the MAil is 

always greater than or equal to the maximum number of marks in any single row of the 

reservation table. On the other hand, the MAil is bounded above by the number of l's in 

the initial collision vector defined in next section. 

Let the number of marks in the ith row of the reservation table be N(i). 

max(N(i)) s MAil s Number of l's in initial collision vector 

In Fig 26, reservation table A has 3 marks in rows 2 and 3, and consequently its 

MAli is at least 3. Likewise the MAli of reservation table B is bounded below by 4. This 

lower bound gives the scheduler a quick estimate of the maximum performance possible for 

a given reservation tabie. Also, any scheduling giving a MAil larger than the upper bound 

can be discarded. However, there is no guarantee that the actual MAil equals the lower 

bound. The reason is that small latencies may cause collisions and therefore can not be 

used in an initiation sequence. 

3. Data Structures 

3.1. State Diagram 

The state diagram [Kogge 81] is a technique to rapidly determine if, at a given time, 

a new initiation in the pipeline will conflict with any previous initiations. At each time 



68 

unit, the current pipeline configuration corresponds to one of the states. The arcs from one 

state to the next indicates what new state the pipeline might be in at the next time unit. 

All possible initiation sequences corresponds to paths in such diagrams. By analyzing all 

such paths, particularly the ones that form closed loops, those with minimum average ini­

tiation interval can be identified. Fig.28 shows a state diagram. Each box represents a 

state and contains a collision vector. The collision vector, described next, shows in compact 

form when new initiations can be made without resource conflicts from that pipeline state. 

The arcs in Fig.28 show how the pipe can change states by making initiations. Each arc is 

labeled with the number of clock cycles required by the pipe to make a transition from the 

arc's source state to its sink state. 

3.2. Collision Vector 

The particular information encoded into each state is termed a collision vector. This 

vector is a d-bit binary sequence, where d is the compute time of the reservation table. 

The d bits are labeled 0 to d -1 from left to right, with a 0 in position i indicating that a 

new initiation i time units from now will not conflict with any currently uncompleted ini­

tiations. A 1 indicates that a collision will occur, and therefore an initiation at that time 

must be avoided. The collision vector for each time period takes into account whether or 

not a new initiation was made in that period. 

The collision vector for the initial state has a special name initial collision vector. 

Since it corresponds to the time unit when the pipeline is first started, it is a representation 

of what latencies are permissible between just two initiations, one at time 0 and one at 

time i. 

3.3. Algorithm For Finding The Initial Collision Vector 

3.3.1. Conceptual 



for i = 0 to d - 1 do { 
make one copy of the reservation table; 

shift the copy to the right i times; 

OR-in an unshifted copy of the same table; 

If there are two marks in the same stage-time entry anywhere 

bit i of the initial collision vector = 1 

else 
bit i of the initial collision vector = 0; } 

69 

In all cases bit 0 of this collision vector is 1 because overlaying a reservation table on 

itself causes a collision everywhere there is a mark. Likewise bit positions d and beyond 

are always 0 because the shifted and nonshifted tables never overlap. 

3.3.2. Actual Implementation 

An alternative approach is to construct the forbidden initiation interval set. The 

number i is a member of this set when, in at least one row of the reservation table there 

are two marks separated by i columns. Analysis of the marks in each row quickly 

identifies the members of this set. We notice that 0 is always in the set. Finally, for all i 

in the set the corresponding bit of the initial collision vector is 1. All other bits are 0. 

for i = 1 to number of stage do /* for each stage */ 

for j = 1 to compute-time do /* for each time *I 

if (table[i][j] is marked) 
for k = j + 1 to compute-time do /* find the forbidden set *I 

if (table[i][k] is marked) 
inserLinto_forbidden_set(k- j); 

3.4. State Diagram 

Once the initial state of the pipeline at time 0 is available, the equivalent states for 

all future times may be computed. 

The state diagram shows the relationship between states at consecutive times. 

Because the problem itself is NP-complete, the number of states generated may be large. 

Since the states where no initiation occurred carry no information, they are deleted to pro-

duce the modified state diagram. 



70 

3.5. Modified State Diagram 

Such a diagram is similar to the original diagram but includes only those states 

resulting from new initiations. Two states in this new diagram are connected by an arc if 

and only if they were connected by some series of arcs in the original diagram. The 

number attached to an arc is the interval between two initiations. Figure 28a lists the 

modified diagram for reservation table B. 

3.5.1. Algorithm For Generating The Modified State Diagram. 

Put initial state with initial collision vector in unprocessed list; 

while (GeL.From_Unprocesse~ist(state) ! = EMPTY) do { 

for each k such that the k th bit of the collision vector is 0 { 

New.-State = Left.-Shift(currenLstate.collision_vector) k times; 

New_State = New_State OR Initial collision vector; 
If New_State already exists 

Insert arc from currenLstate to existing state with value k 

else if New_State = = currenLstate 
Insert arc to currenLstate itself with value k; 

else 
Connect New_State to state with an arc of value k; 
Enter New_State to unprocessed list; } 

Include an arc with value d from each state back to the initial state; 

Insert currenLstate into processed .. Jist; } 



71 

8 8 

(a) reservation table B 

(b) reservation table A 

Fig. 28 Modified State Diagram 

3.6. Efficient Search 

An initiation schedule is a cyclic sequence of initiations. Each initiation corresponds 

to an arc in the modified state diagram; an initiation sequence corresponds to a cycle in the 

state diagram. The initiation sequence must contain the initial state. An optimal schedule 

is an initiation sequence such that the average time separating consecutive initiations in 

the cycle is minimal. 

Simple cycles are an important class in which each state appears no more than once. 

Figure 28b shows the modified state diagram for reservation table A. The initiation inter­

val cycle (3,7,5,7) is not simple while (3,5,7) is. The utility of simple cycles comes from the 

following lemma 

3.6.1. Lemma 2 (Shar 1972) 

In any modified state diagram if there is a cycle with an average initiation interval L, 

there is at least one simple cycle with average initiation interval no greater than L. 



72 

3.6.2. Reducing the Search Time 

The above lemma allows the scheduling algorithm to limit its search for optimal 

cycles to simple cycles because it guarantees that no nonsimple cycle can have a lower 

average initiation interval than one of the simple ones. This makes an exhaustive search 

feasible. 

4. Examples and Results 

4.1. Simple Pipeline Machines 

The scheduler ran in a fraction of a second on most small examples (less than 10 

stages, and less than 10 units compute time). Most of the time is spent searching the 

modified state diagram. The complexity of the state diagram depends on the possibility of 

new initiations. This is directly proportional to 

Compute Time - Number of Elements in the Forbidden set. Therefore the less dense a 

reservation table is, the more complicated the modified state diagram is going to be. 

Since the problem is NP complete, we may run into trouble with a complicated reser­

vation table that generates many states. In practice, this seldom happens because new 

data is typically introduced frequently into the pipe and instructions usually complete 

within 15 to 20 cycles. If an instruction requires more than 10 cycles, usually it is an itera­

tive finite state machine which implies the reservation table is very dense. Also, there are 

usually fewer than 15 stages. Therefore in real applications, the above problem seldom 

occurs. 

4.2. More Complicated Machines 

An artificial reservation table with compute time 15 cycles and 5 pipeline stages with 

the worst case pattern is used to test the scheduler. 



% time scheduler -t 15 -s 5 < T5 
The reservation table being optimized: 
coooocoooocoooo 
ocoooocoooocooc 
oocoooocoooocoo 
ooocoooocooooco 
oooocoooocooooc 

The forbidden initiation 
interval set contains time slot: 
0 3 58 10 13 

The range of MAil is : 4 < = MAil < = 6 

The optimal sequence is as follows : 
( 2 4 12 ) 
The order of states are: 
110101001010010 
110101101011010 
111111111110010 
with aMAII of6. 

23.9u 1.5s 0:46 55% 17 + 4102k 2 + 1io Opf +Ow -- VAX 8800 times 

73 

This example causes 215 states to be generated and corresponds to a worst-case pat-

tern. It is very unlikely to find a hardware configuration that would result in such a table. 

5. Control Synthesis Examples 

Appendix 4 shows two control synthesis examples, using time-stationary and data-

stationary pipeline control schemes [Kogge 81]. 



Conclusion 

This report describes OPD, a set of co-ordinated tools whose objective is to help designers 

produce better pipeline structures in a shorter time. OPD spans a wide range of design lev­

els, starting at the behavioral level. Because OPD has the ability to capture most 

technology-specific constraints, it remains useful right down to the final datapath and 

scheduling design steps. 

Good pipeline design requires the solution of many complex inter-related optimization 

problems. We have developed, coded and evaluated various heuristic and probabilistic algo­

rithms for solving these NP-complete optimization problems within OPD. Inter­

dependencies are handled during one optimization step by using a simplified model of the 

related optimization steps. 

We also illustrate how OPD works in conjunction with existing CAD tools and with 

the designer. The Design Methodology and the Optimization routines were verified using 

several small and large examples. 



[Adams 86] 

[Barbacci 79] 

[Blackburn 85] 

[Brayton 83] 

[Brayton 84] 

[Brayton 86] 

[Coffman 76] 

[DeMicheli 85] 

[Devadas 86] 

[Devadas 87] 

[Devadas 87b] 

References 

G.D. Adams, 
"Functional Specification and Simulation of a Floating Point Co­

Processor for SPUR", 
Report No. UCB!CSD 861311, 
Computer Science Division, U.C. Berkeley, August 1986. 

M.R. Barbacci, 
"Instruction Set Processor Specifications for Simulation, Evaluation 

and Synthesis", 
Proc. 17th Design Automation Conference, 1979. 

R.L. Blackburn, D.E. Thomas, 
"Linking the Behavioral and Structural Domains of Representation in 

a Synthesis System", 
Proc. 23rd Design Automation Conference, 1985. 

R.K. Brayton et al, 
"Logic Minimization Algorithms for VLSI Synthesis", 
Kluwer Academic Publishing, 1983. 

R.K. Brayton, C.T. McMullen, 
"Synthesis and Optimization of Multi-Level Logic", 
Proc. ICCD 84, pp 23-30, 1984. 

R.K. Brayton et al, 
"Multiple-level logic optimization system" 
Proc. IEEE Int. Conf on CAD (ICCAD), Santa Clara, 1986. 

E.G. Coffman Jr., ed., 
"Computer and Job Shop Scheduling Theory", 
Wiley 1976. 

G. DeMicheli et al, 
"Optimal State Assignment of Finite State Machines", IEEE Trans. 

CAD, July 1985. 

S. Devadas, A.R. Newton, 
"GENIE: A Generalized Array Optimizer for VLSI Synthesis", 

Proc. 24th Design Automation Conference, 1986. 

S. Devadas, A.R. Newton, 
"Data Path Synthesis From Behavioral Descriptions: An Algorithmic 

Approach", 
ISCAS, 1987. 

S. Devadas et al, 
"MUSTANG: State Assignment of Finite State Machines targeted 

towards optimal multi-level logic implementation", Proc. ICCAD 1987. 



[Fisher 81] 

[Franz 86] 

[Hill 85] 

[Hockney 81] 

[Horowitz 84] 

[Hsueh 81] 

[Katevenis 83] 

[Kernighan 70] 

[Kernighan 78] 

[Kirkpatrick 83] 

[Kogge 81] 

[Krishna 86] 

J. Fisher, 
"Trace Scheduling: A Technique for Global Microcode Compaction", 

IEEE Transactions on Computers, v. C-30 No. 7, July 1981. 

Franz LISP Reference Manual, Opus 42 

Franz Inc. of Berkeley, 1986. 

M.D. Hill et al, 
"SPUR: A VLSI Multiprocessor Workstation", 

Report No. UCBICSD 861273, 

76 

Computer Science Division, U.C. Berkeley, Dec. 1985, pp 13 and 21-

24. 

R.W. Hockney and C.R. Jesshope, 
Parallel Computers, 

Adam Hilger Ltd, Bristol, 1981. 

E. Horowitz, S. Sahni, 
"Fundamentals of Computer Algorithms", 

Computer Science Press, 1984. 

"Symbolic Layout Compaction", 
in P. Antognetti at at eds., 
Computer Design Aids for VLSI Circuits, 
pp. 175-241, Sijthoff and Noordhoff, 1981. 

M.G. Katevenis, 
"Reduced Instruction Set Computer Architectures for VLSI", 

PhD Dissertation, Report No. UCB/CSD-83/141, 

Dept. of EECS, Computer Science Division, University of California, 

Berkeley. 

B.W. Kernighan, S. Lin, 
"An efficient heuristic procedure for Partitioning graphs", 

The Bell Syst. Tech. journal 49:2, pp. 291-307. 

B.W. Kernighan, D.M. Ritchie, 
"The C Programming Language", 
Prentice-Hall Software Series, 1978. 

Kirkpatrick, D. Cklatt, M. Vecchi, 
"Optimization by Simulated Annealing", 

Science, pp 671-680, 1983. 

P.M. Kogge, 
"The Architecture of Pipelined Computers", 

Prentice-Hall, 1982. 

S. Krishna, T. Hu, 
"Pipeline Scheduling for MOS-VLSI datapath pipes", 

EE244 class report, Fall 1986, Department of EECS, University of 



[Kurdahi 85] 

[Landskov 80] 

[Leiserson 83] 

[Leive 81] 

[Mead 80] 

[Metropolis 53] 

[Nagle 81] 

[Park 85] 

[Park 85b] 

[Parker 85] 

[Patterson 87] 

[SBN 82] 

77 

California, Berkeley. 

F. Kurdahi, A.C. Parker, 
"Area Estimation for VLSI Integrated Circuits", 
Technical Report CRI-85-05, EE-Systems Dept., University of South­

ern California, 1985. 

D. Landskov, S. Davidson, B. Shriver, P.W. Mallet, 
"Local Microcode compaction techniques", 
Comput. Surv., v. 12, pp. 261-294, Sept. 1980. 

C.E. Leiserson, F.M. Rose, J.B. Saxe, 
"Optimizing Synchronous circuitry by retiming", 

Proc. third Caltech con{ on VLSI, pp. 23-36. 

G.W. Leive, D.E. Thomas, 
"A Technology Relative Logic Synthesis and Module Selection Sys­

tem", 
Proc. 19th Design Automation Conference, 1981. 

C. Mead, L. Conway, 
"Introduction to VLSI systems", 
Addison-Wesley, 1980. 

N. Metropolis et al, 
J. Chern. Physics 21. 1087, 1953. 

A.W. Nagle, A.C. Parker, 
"Algorithms for Multiple-Criterion Design of Microprogrammed con­

trol Hardware", 
Proc. 19th Design Automation Con{, 1981. 

N. Park, 
"Synthesis of High-Speed Digital Systems", 
PhD Dissertation, Dept. of Electrical Engineering, University of 

Southern California, September 1985. 

N. Park, A.C. Parker, 
"Sehwa: A Program for Synthesis of Pipelines", 

Proc. 23rd Design Automation Conference, 1985. 

A.C. Parker, 
"MAHA: A Program for Datapath Synthesis", 
Proc. 23rd Design Automation Conference, 1985. 

D.A. Patterson, P.I., 
"A SPURious Progress Report: February 1, 1987.", 
U.C. Berkeley CSD Report. 

D.P. Siewiorek, C.G. Bell, A. Newell, 
"Computer Structures: Principles and Examples", 



[Sechen 85] 

[Sherburne 84] 

[Shin 86] 

[Snow 78] 

[Thomas 83] 

[Weste 81] 

[Weste 85] 

78 

Chap. 39 "Implementation and Performance Evaluation of the PDP-11 

Family", 
McGraw Hill, 1982. 

C. Sechen, A. Sangiovanni-Vincentelli, 
"The Timber Wolf Placement and Routing Package", 

IEEE J. of Solid State Circuits, vol. SC-20 no 2, pp 510-522, April 

1985. 

R.W. Sherburne Jr., 
"Processor Design Tradeoffs in VLSI", 
PhD. Dissertation, Report No. UCB/CSD-84/173, 
Dept. of EECS, Computer Science Division, University of California, 

Berkeley. 

H. Shin, C.H. Sequin, 
"Two-Dimensional Compaction by Zone Refining", 

Proc. 23rd Design Automation Conference, 1986. 

E.A. Snow, D.P. Siewiorek, D.E. Thomas, 
"A Technology-Relative Computer-Aided Design System: Abstract 

Representation, Transformations and Design Tradeoffs", 

Proc. 16th Design Automation Conference, 1978. 

D.E. Thomas et al, 
"Automatic Data Path Synthesis", 
IEEE Computer, Dec 1983. 

N. Weste, 
"Virtual Grid Symbolic Layout", Proc. 18th Design Automation 

Conference, 
pp. 225-233, 1981. 

N. Weste, K. Eshraghian 
"CMOS VLSI Design", 
Addison-Wesley, 1985. 



79 

Appendix 1 - Input Format for SP 

We describe the ASCII input and output format for the stage-partitioning tool SP. We 

show the files for a small graph shown in Fig.3 and for the HP21-MX CPU taken from 

[Park 85] shown in Fig.8. The main purpose of this ASCII format is to facilitate the debug­

ging of SP. The format is therefore easy to parse; it is not meant to serve as a refined input 

language. 

1. Input Format for SP 

The input to SP consists of LISP expressions of the form (keyword arguments ... ). Each 

statement is implemented as a LISP function; the arguments can therefore be any LISP 

expression. There are four possible statements described below. 

• The nodes statement 

This defines the set of operations (nodes) of the dataflow "traces" that the system can exe­

cute. The format is: 

(nodes 

'(name-1 delay-1 [resource-type-!]) 

'(name-2 delay-2 [resource-type-2]) 

The quotes protect the arguments from evaluation by the LISP interpreter. The 

resource-type is optional. This statement declares the name of each node and associates 

a delay and an [optional] resource-type with each node. The resource-type is used to 

describe resource sharing; the number of nodes with a given resource-type that are simul­

taneously active must not exceed the number of resources of that type available to the 

system (this number is specified by the resource-limits statement, below). 

• The resource-limits statement 

This sets a limit on the number of resources of a particular type available to the system. 

79 



The format is: 

(resource-limits 

'(resource-type-1 limit-1) 

Where limit-i is the number of units of type resource-type-i available to the system. 

• The paths statement 

serves to describe one dataflow "trace'. The format is: 

(paths 

'trace-name 

trace-probability-of-occurrence 

'(dst-1 sce-1-1 sce-1-2 ... sce-1-N1) 

'(dst-2 sce-2-1 ... sce-2-N2) 

80 

This statements means that there are arcs from sce-1-2 to dst-1, from sce-1-1 to dst-1, and 

so on. In short, the fanin arcs of dst-i are the sce-i-1, sce-i-2 , through sce-i-Ni. 

• The bit-widths statement 

optionally declares the bit-width of the arcs connecting various nodes. This statement 

only applies to 2-point nets that connect the output from one block to the input of one 

other block. The format is: 

(bit-widths 

number-1 'node-source-1 'node-sink-1 

number-2 'node-source-2 'node-sink-2 

where number-i is the bitwidth of the arc joining node-source-i to node-sink-i. 



81 

• The net-widths statement 

optionally declares the bit-width of arcs connecting various nodes. This statement 

applies to multi-point nets that connect the outputs from one or more blocks to the inputs 

of one or more blocks. The format is: 

(net-widths 

number-1 '((ns-1.1 nd-1.1) (ns-1.2 nd-1.2) ... (ns-l.N nd-l.N)) 

number-2 '((ns-2.1 nd-2.1) ... (ns-2.N2 nd2.N2)) 

where number-J is the bitwidth of net #J, which is defined as joining the outputs of 

nodes ns-J.1 through ns-J.NJ to the inputs of nodes nd-J.1 through nd-J.NJ. This state­

ment simultaneously defines the multi-point nets and their bitwidth. 

2. Examples 

We now show the input files to SP and the output from SP for two examples. The first one 

is for a small graph shown in Fig.3; the second one describes the HP21-MX CPU and is 

taken from [Park 85], shown in Fig.8. 

The purpose of these examples is to give the reader a feel for the number and type of 

interactions involved in using OPD. 



Contd Appendix 1 - Example from Fig.3 

Script started on Wed Feb 24 22:22:07 1988 
% cat nfig3.1 

; This example is the one illustrated in Figure 3. 

; It also appears in Appendix 1. 

(nodes 
'(m1 100) '(m2 100) '(m3 100) '(p1 100) '(p2 100) '(d1 200) 

) 

(paths 
'tl 1.0 '(m2 m1 m3) '(p1 m1 m2) '(p2 m3 m2) '(d1 p1 p2) 

) 

(make-sorder) 
(bit-widths 1 'm2 'p2 1 'm2 'p1 1 'p2 'd1 1 'p1 'd1) 
(net-widths 1 '((m3 m2) (m3 p2)) 1 '((m1 m2) (m1 p1))) 

%lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 

= > (load 'nfig3) 
;; Loading file "nfig3.1" 
gen-node: WARN - node S delay= 0 
gen-node: WARN - node E delay= 0 
t 
= > (setq partition (optO 200)) 
-- NOTE: 200 is the target stage length. 
(wal12 wal13 wal14 wal15) 
= > (optl partition) 
curcost = 202 
202 
= > (mapc 'print-wall partition) 
-- NOTE: wal12 is a stage latch; the format is: 
-- NOTE: arc-name source-node sink-node 
WALL wal12: 

arc19.sorder S->m3 
arc 17 .sorder S->m1 

WALL wal13: 
arc8.sorder m1->p1 
arc12.sorder m3->p2 
arc13.sorder m3->m2 
arc9.sorder m1->m2 

WALL wal14: 
arc14.sorder p1->d1 
arc15.sorder p2->d1 

WALL wal15: 
arc21.sorder d1->E 

(wal12 wal13 wall4 wal15) 
= > (print-part partition) 

Stage wal12- > wal13 
(m3 m1) 

82 



Stage wal13- > wal14 
(pl p2 m2) 

Stage wal14- >wallS 
(dl) 

((wal12 wal13) (wall3 wal14) (wal14 wallS)) 
= > (exit) 
%"0 
script done on Wed Feb 24 22:24:02 1988 

83 



Contd Appendix 1 • HP21-MX CPU Example (Fig.8) 

Script started on Mon Nov 23 10:44:03 1987 
% 
% 
% cat hp21mx.l 
-- NOTE: This is the HP21-MX Example. See Fig.8. 

' ; dataftow graph for the HP-21MX CPU 
; See also Fig.8 please. 
; From N. Park's Thesis, p. 82 
; T1 corresponds to non-branch microcycles; 
; T2 describes branches. 

(nodes 
'(S 0) 
'(A 10) 
'(B 70) 
'(C 15) 
'(D 20) 
'(F 15) 
'(G 15) 
'(H 20) 
'(I 25) 
'(J 65) 
'(K 20) 
'(L 10) 
'(M 50) 
'(E 0) 
) 

(paths 
'T1 ; non-branch microcycles 
0.1 
'(AS) 
'(B A) 
'(C B) 
'(DB C) 
'(F B C) 
'(G B C) 
'(H B C) 
'(l D) 
'(J F I) 
'(KG J) 
'(L H K) 
'(E L) 
) 

(paths 
'T2 ; branch microcycles 
0.9 
'(AS) 

84 



'(B A) 
'(C B) 
'CD B C) 
'(F B C) 
'(H B C) 
'(M F D) 
'(L M H) 
'(E L) 
) 

% 
% 
% 
% lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 
= > (load 'hp21mx] 
;; Loading file "hp21mx.l" . 
gen-node: WARN - node S delay= 0 
gen-node: WARN - node E delay= 0 
t 
--NOTE 
--NOTE 

The next statement sets up a seed partition The "wall" (stage-latch) 
W is created such that its fanin nodes are B and C. 

= > (walls '(W B C] 
((W B C)) 

85 

= > (trace cost] 
-- NOTE: we trace the cost function to show you how often it is called during optimization. 

(cost) 
= > (optl (list W] 
-- NOTE: this optimizes the seed partition above 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 225 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 140 
curcost = 140 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 155 
140 
= > (optl (list W] 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 140 
1 <Enter> cost ((wall2)) 



1 <EXIT> cost 155 
1 <Enter> cost ((wal12)) 
1 <EXIT> cost 120 
curcost = 120 
1 <Enter> cost ((wal12)) 
1 <EXIT> cost 140 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 140 
1 <Enter> cost ((wall2)) 
1 <EXIT> cost 140 
120 
--NOTE: optimized max stage length = 120ns. 
= > (print-wall W] 
WALL wall2: 

arc37 B->F 
arc36 B->G 
arc35 B->H 
arc42 C->F 
arc41 C->G 
arc40 C->H 
arc 52 D->M 
arc44 D->I 

-- NOTE: Although this is not the same Partition as in [Park 85], it is 
-- NOTE: just as good (same cycle time). Fig.8 shows the partition from [Park 85]. 

(arc37 arc36 arc35 arc42 arc41 arc40 arc52 arc44) 
= > (setq part-IV (optO 130] 
-- NOTE: we are going to calculate 
(wall87 wall88 wall89) 
-- NOTE: a four-stage partition. 
= > (optl part-IV] 

curcost = 115 
115 
-- NOTE: a rough 4-stage partition (cycle = 115ns) 

= > (optl part-IV] 

curcost = 115 
115 
- NOTE: Optl has now gotten stuck in a local minimum 
-- NOTE: with a cycle time of 95ns for a 4-stage 
-NOTE: partition. 
-- NOTE: so we are going to run Opt2 to escape from this local minimum. 

= > (opt2 part-IV] 

110 
-NOTE: found a better 4-stage partition (cycle= 110ns) 
= > (optl part-IV] 

86 



95 
-- NOTE: optl has a still better 4-stage partition. 
= > (optl part-IV] 

95 

= > (mapc 'print-wall part-IV] 
WALL wall87: 

arc33 S->A 
WALL wall88: 

arc41 C->G 
arc36 B->G 
arc40 C->H 
arc35 B->H 
arc42 C->F 
arc37 B->F 
arc43 C->D 
arc38 B->D 

WALL wall89: 
arc53 F->M 
arc52 D->M 
arc46 G->K 
arc4i H->L 
arc48 I->J 
arc45 F->J 

(wal187 wal188 wall89) 
=> 
Exiting ... 
% 
script done on Mon Nov 23 11:06:35 1987 

8i 



Appendix 2- PA input format, examples 

1. Tool Input Description 

The PA input format is meant to be an easily parsed description syntax. Each statement is 

a LISP expression and is implemented by a Franz LISP function; the arguments can there­

fore be arbitrary LISP expressions. 

The input format consists of five items: a clock specification, a description of the blocks and 

latches, a description of the connectivity among blocks, a set of constraints, and a descrip­

tion of which latches are actually used for pipeline staging (MOS designs sometimes use 

latches to temporarily hold results; these latches do not define stage boundaries). 

1.1. Clock Specification 

A clock cycle is assumed to consist of a repeating set of phases. The length of each phase is 

specified via the phases keyword: 

(phases length-of-phase-1 ... length-of-phase-N) 

Where the cycle has N phases. The time units used have no intrinsic meaning to the 

tool. However, the iterative optimization algorithms use a basic increment equal to one 

time unit for exploring alternatives. With a finer unit, we can therefore obtain greater pre­

cision at the expense of increased run times. 

1.2. Block Description 

For each block, we specify three items: a name, the block's type, and its propagation delay: 

(blocks '(block-namel block-typel block-delayl) ... ) 

Known types are STATIC, DYNAMIC, LATCH. A STATIC block corresponds to combina­

tional logic or external blocks introducing delay. Such a block does not need to run on any 

particular phase; it starts computing outputs as soon as the input data is stable. A 

DYNAMIC block corresponds to dynamic or nora or domino logic gates. The phase on 

which such gates run must open only after all the input data has settled. In order to 

88 



89 

distinguish true dynamic gates from domino and nora, we give the tool an extra constraint 

to make sure that no chained dynamic gates will be assigned to the same clock phase. A 

LATCH may or may not be used for staging. The difference between a LATCH and other 

gates is that the phase on which LATCHes run can open before the input data has settled; 

however, it must close only after the data is valid. 

The delay associated with a block corresponds to a worst case all-pairs input to output 

propagation delay. Delays that depend on the particular input/output pair can be handled 

by mapping each block to a set of parallel "dummy" blocks, with one "dummy" per 

input/output pair. 

The tool makes a few assumptions about the blocks. By default, gates are assumed to 

be able to freeze their output; this usually means there has to be an enable line or some 

logic on the clock. It is possible to set up constraints to model dynamic gates that loose out­

put when precharged. 

1.3. Connectivity Description 

This specifies the path that a datum follows through the gates and latches in order to get 

the computation done. The path keyword is used: 

(path '(destl scel.l scel.2 ... scel.Nl) ... ) 

Here, destl and scel.x are block names. The construct means that the output from blocks 

scel.l through scel.Nl feed block destl. In other words, the path keyword is a convenient 

way to specify the connectivi~y graph of the datapath. This graph must be a DAG. There 

can be parallel paths, but there must be no loops. Parallel paths are scheduled for worst­

case. It is possible to deal with shared resources and fixed loops by unrolling the loops and 

adding extra constraints. 

1.4. Constraints Specification 

The general input syntax is: 



90 

(constraints '(type block! ... blockN) ... ) 

The tool can handle five different constraints: 

• EQPHI: Equal Phase constraint. 

The syntax is (EQPHI block! ... blockN). This constraint specifies that the given blocks 

should be run on the same clock phase. The blocks need not necessarily run at the same 

time (they can be off by an integer number of cycles). This constraint is typically used 

when gates share a common clock line, or when we want to force all the dynamic gates to 

be precharged on the same phase(s). 

• FPHI: Fixed Phase constraint. 

Syntax (FPHI block-name phase-number). Specifies that the given block should be run 

on the given phase. This is useful for precharge schemes, as well as for handling exter­

nal constraints, such as inputs arriving on a know phase. Phases are numbered starting 

with 0. 

• NEQPHI: Non_equal phases constraint. 

Syntax (NEQPHI block! ... blockN). Specifies that the phases assigned to the given 

blocks should be pairwise distinct. 

• NVPHI: No_overlap "work-phases" constraint. 

Syntax (NVPHI block! ... blockN). Specifies that the given blocks should run off a set of 

phases that are pairwise disjoint. This constraint is primarily used to describe resource 

sharing within a stage. This is also useful to make sure that there are no open paths in 

the stage latches, or to handle chained dynamic gates (which should not run.off common 

phases). 

• NVT: No_overlap "work-times" constraint. 

Syntax (NVT block! .. blockN). Specifies that the work times of the given blocks should 

be pairwise disjoint. This constraint is used to describe resources that are shared across 

pipe stages. Each stage locks the resource for the duration of that stage. The work time 



91 

of a block is defined as the time during which the result from that block is needed to 

ensure correct operation of the pipeline. The work time of a block therefore begins when 

the stage latch that holds its input data opens. The work time ends when the output 

from the block gets effectively latched at the end of the stage. This constraint describes 

resource sharing between stages and can also describe unrolled loops. A shared resource 

RESC is a block that is used twice, generally in different pipeline stages. As Fig.25 

shows, we can not model such a situation with only one copy of block RESC, since this 

would be interpreted to mean that RESC must wait for both stages to complete, and this 

would cause a loop in the connectivity graph. We need to duplicate RESC into two 

blocks RESCl and RESC2, one duplicate per utilization. Since RESCl and RESC2 are 

in fact implemented by the same physical gates, they can not be used simultaneously. 

This is what the constraint (NVT RESCl RESC2) captures. We can then be sure that 

the phase assignment and schedule produced will be implementable with only one physi­

cal resource RESC. 

Four of the five constraints are therefore concerned with phase assignment; the fifth, NVT, 

is a scheduling constraint. 

1.5. Stage Latches Description 

We simply input a list of latch pairs that are to be used for staging. The syntax is: 

(stages '(stagel-latch-start stagel-latch-end) ... ) 

We now show the input to PA and the output from PA for two examples. The first is a 

small example which also illustrates PC, the phase calculation step; the second describes 

the section of the SPUR [Patterson 87] [Hill 85] Floating Point Unit [Adams 86] datapath 

which manipulates the fracti<1nal part of Boating data. The SPUR FPU has about 40 

blocks. We describe the FPU fraction datapath as it is used to perform the ADD instruc­

tion. Since the FPU is a datapath chip with few opportunities for scheduling optimizations, 

the resulting timing is very close to that used by the designers. There is a layer of logic 



92 

between the clocks and the latch controls in the FPU. It is therefore potentially possible to 

change the phase assignment dynamically, to adjust to the particular instruction or instruc­

tion mix being executed. 



Contd Appendix 2 - Tutorial example from Fig.4 

Script started on Sun Nov 22 19:50:41 1987 
% cat nfig4.1 

' ; Please refer to Fig.4 
; This example illustrates Both SP and PA/PC 
; on the system show in Fig.4 

(nodes 
'(S 0) 
'(A1 1 r1) 
'(A2 1 r1) 
'(A3 1) 
'(B1 1) 
'(B2 2) 
'(B3 1) 
'(B4 1) 
'(C1 2) 
'(C2 2) 
'(C3 2) 
'(C4 2) 
'(E 0) 
) 

(resource-limits 
'(r1 1) 
) 

(paths 
'T1 
1.0 

'(A1 S) 
'(A2 S) 
'(A3 S) 
'(B1 A1) 
'(B2 A1 A2) 
'(B3 A2 A3) 
'(B4 A3) 
'(C1 B1) 
'(C2 B2) 
'(C3 B3) 
'(C4 B4) 
'(E C1 C2 C3 C4) 
) 

(setq part (optO 2)) 

%lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 
= > (load 'nfig4) 
;; Loading file "nfig4.1" 
gen-node: WARN - node S delay= 0 
gen-node: WARN - node E delay= 0 
t 

93 



= > (setq part (optO 2)) 
(wall7 wallS wall9 walllO) 
= > (optl part) 
curcost = 2 
2 
-- NOTE: Best SP Partition cycle time = 2 

= > (mapc 'print-wall part) 
WALL wall7: 

arc18 S->A2 
arc17 S->A3 
arc21 Al->Bl 
arc20 Al->B2 

WALL wallS: 
arc23 A2->B2 
arc20 A1->B2 
arc26 B1->C1 
arc28 B3->C3 
arc29 B4->C4 

WALL wall9: 
arc27 B2->C2 
arc30 C1->E 
arc32 C3->E 
arc33 C4->E 

WALL wall10: 
arc33 C4->E 
arc32 C3->E 
arc30 C1->E 
arc31 C2->E 

(wall7 wallS wall9 walllO) 

--NOTE: We now run PC to break up this cycle=2units into phases. 

-- NOTE: the following step produces the FOLDED graph as shown in Fig.4 

= > (go-phase-calc part] 
data path file name ? 
-- NOTE: the datapath is provided by the designer. 

nfig4.dp.l 
(setq datapath-file 'nfig4.dp.l) 
mini #phases ? 
--NOTE: We give one as minimal number of phases. 

1 
temp file for phase parms? 
nfig4.phases-temp.l 
-- NOTE: this file holds the FOLDED graph (see Fig.4) 

% cat nfig4.phases-temp.l 

(setq datapath-file 'nfig4.dp.l) 
(setq GLphase-calc 't) 
(setq PCminiphis '1) 
(nodes 

'(S 0) 
'(A1 1 rl) 
'(A2 1 r1) 

94 



'(A3 1) 
'(B1 1) 
'(B2 2) 
'(B3 1) 

'(B4 1) 

'(C1 2) 

'(C2 2) 
'(C3 2) 

'(C4 2) 

'(E 0) 
) 

(resource-limits 
'(r1 1) 
) 

(paths 
'pg 
1.0 
'(A1 S) 

'(A2 S) 
'(A3 S) 

'(B1 S) 

'(B2 S) 
'(B3 A3 A2) 
'(B4 A3) 
'(C1 S) 
'(C2 S) 
'(C3 S) 
'(C4 S) 
'(E C4 C3 C2 C1 B4 B3 B2 B1 A1) 
) 

-- NOTE: we are now going to run SP on the FOLDED graph 

-- NOTE: to determine the phase lengths. See Fig.4. 

%lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 

= > (load 'nfig4.phases-temp) 
;; Loading file "nfig4.phases-temp.l" 

gen-node: WARN - node S delay= 0 
gen-node: WARN- node E delay=O 

t 
= > (setq phase-part (optO 2)) 
(wall2 wall3) 
= > (optl phase-part) 

--NOTE: SP on the FOLDED graph calls PA to actually schedule the 

-- NOTE: datapath with the phase length sequence under evaluation. 

phase-calc-cost: (exec.refine nfig4.dp.l 2) 

95 



I> PAchk [clock.l]: CPU time for preprocessing: 0.69 seconds 
;; Loading file "result.refine.I" 
phase-calc-cost 7 
7 
--NOTE: this is the result from PA. 

-- NOTE: The best split found is with just one phase. 

=> 
Exiting ... 
% 
script done on Sun Nov 22 20:02:20 1987 

96 



97 

APPENDIX 2 
FIG A2.1: SPUR FPU "FRACTION DATAPATH" 

~nDatapa1h 

c3{)> 

I [)c.&l Q&. t:n::. clr Canvcn l 
d{)> 

I ltepurFilc I I RT.OT I 
I Bua Driven l 

r--
I Auu:h I I RT.lDT I 

1----1 
I Bl..adl l I RT.lDT I 

1 \ 

I MuxfG 
<64> I .--
01 Mu.x l EJpaaau 

1 Bal 

01 OoAu h 1 
....-

I l.Shif10utl ~ld I 
~ ~ <2{)> 

I Jt.t!.Sbihc:r lfcast-
r-'--1 

I R5h &1 0u1 ul.d l I GRS I 
f----"1. T 

I 1.51\ifllnL tch I IGRS I 

t1l f---1 
Mln.B l IGRS j 

1 
Ot OoB!...atch II I 

~ B•I·A ~ GRS tj, 
j 

ln!ulcll 

.-j-{[J I 
~ l 

Complement I I GRS I 
Tut 1 
IPL RIPLlShih I I GRS ~ ..__ ~ l.r4 ] 1--

I 63bitlnc II ct.illnc l- P1..A 

I 
I lncOul Latch liGRSI 
~ 1 

L J 1 De.a.ea ar 1 r GRS 

BwA 



98 

Contd Appendix 2 - FPU Example 

We now show the SPUR FPU example. What follows is the input file that describes the 

FPU "Fraction" Datapath, used to produce the energy curve of Fig.21. 

; This version has an extra latch at the output of the 1s detector 

; to make the pipeline function correctly. 

; (flags debug_poke debug_greedy) 

(phases 35 35 35 35) 

(blocks 

'(pads:O LATCH 0) 
; input pad 

'(pads:1 STATIC 0) 
; output pad 
; no NVT constraint here: they are different pins. 

'(RegDecoder DYNAMIC 9) 

'(Datai/O&UnpackConvert:O STATIC 48) 
; copy for input data unpacking 

'(Datai/O&UnpackConvert:1 STATIC 48) 
; for packing output result 

'(RegisterFile:O LATCH 15) 
; copy for writing out data 

'(RegisterFile:1 LATCH 15) 
; for reading back result 

'(BusDriver:O STATIC 9) 
; to load in data 

'(BusDriver:1 STATIC 9) 
; write back result 

'(BusA:O STATIC 0) 

'(BusB:O STATIC 0) 
; copy fed by input bus driver 

'(BusB:1 STATIC 0) 
; copy fed by incrementer output latch 

'(BusB:2 STATIC 0) 
; copy used for writing back result 

'(ALatch LATCH 5) 
'(BLatch LATCH 5) 
'(MuxFG STATIC 12) 

'(ExponentBox:O STATIC 120) 



'(ExponentBox:1 STATIC 10) 
; ; fed by ones detector. 
; Shorter delay since already set up. 

'(MuxA STATIC 12) 
'(OpALatch STATIC 5) 

'(R&LShifter:O DYNAMIC 16) 
; Right Shift for aligning fractional part 

'(R&LShifter:1 DYNAMIC 16) 
; Left Shift for normalizing fractional part 

'(RShiftOutLatch LATCH 5) 
'(MuxB STATIC 12) 
'(OpBLatch LATCH 5) 
'(Adder STATIC 37) 
'(IntLatch LATCH 20) 
'(Complement STATIC 5) 
'(TestR1PL1 STATIC 10) 
'(R1PL1Shift STATIC 12) 
'(RoundPLA STATIC 10) 
'(63bitlnc STATIC 37) 
'(lncOutLatch LATCH 20) 
'(1sDetector DYNAMIC 20) 
'(DetectorLatch LATCH 5) 
'(LShiftlnLatch LATCH 5) 
'(LShiftOutLatch LATCH 20) 
) 

(path 
'(RegDecoder pads:O) 
'(Datai/0& UnpackConvert:O pads:O) 
'(RegisterFi!e:O Reg Decoder Datai/0& U npackConvert:O) 

'(BusDriver:O RegisterFile:O) 
'(BusA:O BusDriver:O) 
'(BusB:O BusDriver:O) 
'(ALatch BusA:O) 
'(BLatch BusB:O) 
'(MuxFG ALatch BLatch ExponentBox:O) 
'(ExponentBox:O pads:O) 
'(MuxA MuxFG BusA:O) 
'(OpALatch MuxA) 
'(R&LShifter:O MuxFG ExponentBox:O) 
'(RShiftOutLatch R&LShifter:O) 
'(MuxB BusB:O RShiftOutLatch) 
'(OpBLatch MuxB) 
'(Adder OpALatch OpBLatch) 

; This concludes the section of the pipeline that feeds the adder. 

; The following part gets the intermediate result and loads it back into 

; the register file or the pads. 

'(IntLatch Adder) 
'(Complement IntLatch) 

99 



'(TestR1PL1 Complement) 
'(R1PL1Shift TestR1PLl Complement) 
'(RoundPLA RlPL1Shift) 
'(63bitlnc RoundPLA RlPL1Shift) 
'(lncOutLatch 63bitlnc) 
'(BusB:l IncOutLatch) 
'(lsDetector BusB:l) 
'(DetectorLatch 1sDetector) 
'(ExponentBox:1 DetectorLatch) 
'(LShiftlnLatch BusB:1) 
'(R&LShifter:l LShiftlnLatch DetectorLatch ExponentBox:l) 

'(LShiftOutLatch R&LShifter:1) 
'(BusB:2 LShiftOutLatch) 
'(BusDriver:l BusB:2) 
'(RegisterFile:1 BusDriver:1 RegDecoder) 

'(Datal!O&UnpackConvert:l RegisterFile:1) 

'(pads: 1 Datal/0& U npackConvert: 1) 
) 

(constraints 
; make sure dynamic gates fire only after input has stabilized. 

'(NVPHI RegDecoder pads:O) 
'(NVPHI R&LShifter:O ExponentBox:O) 
'(NVPHI R&LShifter:O MuxFG) 
'(NVPHI lsDetector BusB:1) 
'(NVPHI R&LShifter:1 ExponentBox:1) 
'(NVPHI R&LShifter:1 LShiftlnLatch) 

'(NVT BusB:O BusB:1) 
'(NVT BusB:O BusB:2) 
'(NVT BusB:l BusB:2) 

'(NVT R&LShifter:O R&LShifter:1) 
'(NVT BusDriver:O BusDriver:l) 
'(NVT RegisterFile:O RegisterFile:1) 

'(NVT Datal!O&UnpackConvert:O Datal!O&UnpackConvert:1) 

) 

(stages 
'(pads:O ALatch) 
'(pads:O BLatch) 
'(ALatch OpALatch) 
'(BLatch OpBLatch) 
'(OpALatch IntLatch) 
'(OpBLatch IntLatch) 
'(lntLatch IncOutLatch) 
'(lncOutLatch LShiftOutLatch) 
'(LShiftOutLatch pads:l) 
) 

100 



101 

We now show the output of the Phase Assignment routine PA on the SPUR FPU. 

CYCLE# 0 2 3 

PHASE# 0 2 3 0 2 3 0 2 3 0 2 3 

-
INPtJT LATCH CLOSES .... 

REG FILE FIRES X 

A-LATCH .S. B-LATCH CLOSE 1. 

R&.L-SHIFTER FIRES ~ 

OPA-LATCH. OPB-LATCH, 
RSHIFTOtrr -LATCH CLOSE 1. 

ADDER FIRES X 

!NT-LATCH CLOSES 1. 

COMPLEME!'.'TER FIRES X 

63-BIT INC FIRES 

IKCOL'T-LATCH CLOSES 

lSDETECTOR FIRES 
X 

DETECTOR-LATCH CLOSES 1. 

R&L-SHIFTER FIRES 
X 

-
LSHIFTOL'T-LATCH CLOSES 

.... 

The raw text output from PA for the FPU "Fraction" Datapath follows. 

Block ___ ..-J:Fire Time 

The Fire Time is in the form: cycle# .phase# .offset time 

pads:O -1.3.35 
RegDecoder 0.0.0 

Datai!O&UnpackConvert:O 0.0.0 

ExponentBox:O 0.0.0 
RegisterFile:O 0.1.35 



102 

BusDriver:O 0.2.15 
BusB:O 0.2.24 
BusA:O 0.2.24 
ALatch 0.2.24 
BLatcb 0.2.24 
MuxFG 0.3.15 
MuxA 0.3.27 

R&LShifter:O 1.0.0 
OpALatcb 1.0.4 

RShiftOutLatch 1.0.16 
MuxB 1.0.21 

OpBLatch 1.0.33 
Adder 1.1.3 

IntLatch 1.2.5 
Complemen 1.2.25 
TestR1PL1 1.2.30 

R1PL1Shift 1.3.5 
RoundPLA 1.3.17 

l63bitlncl 1.3.27 
IncOutLatch 2.0.29 

BusB:1 2.1.14 
l1sDetectorl 2.2.0 

LShiftinLatcb 2.1.14 
DetectorLatcb 2.2.20 
ExponentBox:1 2.2.25 
R&LShifter:1 2.3.0 

LShiftOutLatch 2.3.16 
BusB:2 ____ 3.0.1 

BusDriver:1 3.0.1 
RegisterFile:1 3.0.10 

DataiiO&UnpackConvert:1 3.0.25 
pads:1 3.2.3 



' 

Appendix 3 - Stage Partitioning and Phase Length Calculation 

for the RISC-H 

103 

We first run SP on a dataflow graph based on the RISC-II CPU [Katevenis 83]. Next, we 

run PC with this partitioning and a RISC-H based datapath. Finally, assuming we want 

four phases of equal length, we calculate the best phase length to sequence the RISC-II 

datapath by trying out a range of values. 

This example illustrates how the pipe stage lengths are related to the phase lengths. 

In fact, we will see that this relationship is very tenuous. Even though we may be able to 

find a good stage partitioning, and to do a good phase assignment with designer-chosen 

phase lengths, it remains difficult to calculate these phase lengths from the dataflow graph 

and the datapath. 

The RISC-II example has about 30 blocks. In this case, using the designer's phase 

length choice, PA assigned phases to datapath blocks in a way that is very close to what 

the designers did, the only difference being in the reference - which phase is real!y the first 

one ? This comes as no surprise, because the designers of the RISC-H chose the phase 

lengths so as to satisfy the timing dependencies of the chip in an optimal fashion (see 

[Katevenis 83] chap. 4.2 pp 102-112). By trying out different lengths for the phases, we 

were able to confirm that the chosen length for each one of the four phases - 120 

nanoseconds - is very close to the optimal length. The pipe throughput decreased for other 

phase lengths. In fact, we found the optimum to be at llOns, but the small difference - less 

than 10% - can be accounted for by uncertainty on delay figures for the blocks. 

103 



bus A 

REGISTER 

f1LE 

busB 

APPENDIX 3: RISC-11 DATAPATH 

[KATEVENIS 83] 

104 

JlEldORY 

(busrxT 

busOUT 



Contd Appendix 3 · RISC-11 Example 

Script started on Moo Nov 23 11:29:43 198 
% 
% 
% cat r21-dfg.l 

; Example inspired by the RISC-H Micro-architecture 
; (cf. M. Katevenis' Thesis) . . , 
; This version has only one datapath for all instructions, 
; and therefore 
; covers the worst-case paths. 

; This is the DFG corresponding to the actual datapath in r2l.l 

(nodes 
'(S 1) '(E 1) 

; First !-Fetch 

'(nxtpc 1) 
; PC for instr access 

'(dmux_O 1 DMUX) 
; latching multiplexor for memory address 

'(pads_O 70) 
; delay to pins 

'(mem_O 300 MEM) 
; Memory behaves like a dynamic_ fixed work phases 

'(ir 1) 

; Instruction Register - abstraction for RD&IMM&OP 

; Register File components 

'(rr-dec 90) 
; Register Decode - number of reg accessed for read 

'(rw-dec_O 90) 
; Register Decode -number of reg accessed for write 

'(rw-dec_1 90) 
; Register Decode - number of reg accessed for write 

'(rr 160) 
; Reg Read+ precharge 

'(rw_O 140 RW) 
; Reg Write - r/r instr 

'(rw_1 140 RW) 
; Reg Write - load 

; ALU and surrounding latches 

'(alu 
'(alu-dum_O 
'(alu-dum_1 
'(ai 

170 ALU) 
170 ALU) 
170 ALU) 
1) 

105 



'(bi 1) 
'(dsLO 1 DST) 

; DST used to bold ALU output 
'(dsL1 1 DST) 

; DST used to bold data from memory to write in RF 
'(src 1) 

; to hold reg file output 

' ; Dynamic Shifter 

'(shifLO 40 SHIFT) 
; Shifter used for a shift instruction 

'(sbifL1 40 SHIFT) 
; Shifter used to route immediates 

'(sbifL2 40 SHIFT) 
; Shifter used to align data from memory 

; LOAD Instruction 

'(dmux_1 1 DMUX) 
'(pads_1 70) 

; delay to pins 
'(mem_1 300 MEM) 
'(dimm 1) 

; to store data from memory 
; see sbifL2, dsL1 

; STORE Instruction 

(resource-limits 
'(MEM 1) 
'(ALU 1) 
'(DST 1) 
'(DMUX 1) 

'(RW 1) 
'(RFP 1) 
'(SHIFT 1) 
) 

(paths 
'T1 
1.0 

; First !fetch 

'(dmux_O nxtpc) '(pads_O dmux_O) 
'(mem_O pads_O) '(ir mem_O) 

; Reg File to AL U 

'(rr-dec ir) 
'(rr rr-dec) 

; Read involved regs - address for LD/ST 
'(src rr) 

106 



; temp latch 
'(ai rr) 
'(bi rr shifLl) 
'(alu ai bi) 
'(shifLl ir ) 

; immediates routing 
. , 
; LOAD instruction 

'(dmux_l dsLO) 
'(pads_1 dmux_l) 
'(meDL.1 pads_1) 
'(dimm mem_1) 
'(shifL2 dimm) 
'(dsL1 shifL2) 

; STORE instruction 

'(dsLO alu shifLO) 

; SHIFT instruction 

'(shifLO ir src) 

; Dest Write into RegFile - r/r instr 

'(rw-dec_O ir) 
'(rw_O dsLO alu-dum_O) 
'(alu-dum_O rw-dec_O) 

; Dest write into regfile - load instr 

'(rw-dec_1 ir) 
'(rw_1 alu-dum_1 dsL1) 
'(alu-dum_1 rw-dec_1) 
) 

% 
% 

-- NOTE: we are now going to run SP on the RISC-H Data Flow Graph. 

%lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 
= > (load 'r21-dfg] 
;; Loading file "r21-dfg.l" 
t 
= > (setq part (optO 450] 
(wall2 wall3 wall4 wallS wall6) 
= > (optl part] 
curcost = 671 
curcost = 591 
591 
= > (optl part] 

107 



curcost = S01 
curcost = 423 
423 
= > (optl part] 
curcost = 422 
422 
= > (opt2 part] 
cure = 421 
421 
= > (opt2 part] 
421 
= > (optl part) 
421 
-- NOTE: best partition. Cycle time = 421ns. 
= > (mapc 'print-wall part] 

WALL wall2: 
arc63 S->nxtpc 

WALL wall3: 
arc37 ir->shifLO 
arc3S ir- > rw-dec_1 
arc36 ir- > rw-dec_O 
arc39 ir->rr-dec 
arc38 ir->shifL1 

WALL wall4: 
arc3S ir- > rw-dec_1 
arc36 ir- > rw-dec_O 
arcSS shifLO- > dsLO 
arc46 alu->dsLO 

WALL wallS: 
arc6S rw_O->E 
arcS3 dsL1->rw_1 
arc42 rw-dec_1- > alu-dum_1 

WALL wallS: 
arc6S rw_O->E 
arc67 rw_1- > E 

(wa112 wall3 wall4 wallS wall6) 

--NOTE: we are going to run PC/PA now 

= > (go-phase-calc part] 
data path file name? 
r21.1 
(setq datapath-file 'r21.1) 
mini #phases ? 
4 
temp file for phase parms? 
r2l.phase-calc-te.ii1p.l 
% 
% 
% 
% cat r2l.phase-calc-temp.l 
(setq datapath-file 'r21.1) 
(setq GLphase-calc 't) 
(setq PCminiphis '4) 

108 



(nodes 
'(S 1) 
'(E 1) 
'(nxtpc 1) 
'(dmux_O 1 DMUX) 
'(pads_O 70) 
'(mem_O 300 MEM) 
'(ir 1) 
'(rr-dec 90) 
'(rw-dec_O 90) 
'(rw-dec_1 90) 
'(rr 160) 
'(rw_O 140 RW) 
'(rw_1 140 RW) 
'(alu 170 ALU) 
'(alu-dum_O 170 ALU) 
'(alu-dum_1 170 ALU) 
'(ai 1) 

'(hi 1) 
'(dsLO 1 DST) 
'(dsL1 1 DST) 
'(src 1) 
'(shifLO 40 SHIFT) 
'(shifL1 40 SHIFT) 
'(shifL2 40 SHIFT) 
'(dmux_1 1 DMUX) 
'(pads_1 70) 
'(mem_1 300 MEM) 
'(dimm 1) 
) 

(resource-limits 
'(DMUX 1) 
'(MEM 1) 
'(RW 1) 
'(ALU 1) 
'(DST 1) 
'(SHIFT 1) 
'(RFP 1) 
) 

(paths 
'pg 
1.0 
'(E shifLO dsL1 alu rw_1 rw_O rw-dec_1 ir) 
'(nxtpc S) 
'(dmux_O nxtpc) 
'(pads_O dmux_O) 
'(mem_O pads_O) 
'(ir mem_O) 
'(rr-dec S) 
'(rw-dec_O S) 
'(rw-dec_1 S) 
'(rr rr-dec) 

109 



% 
% 

'(rw_O dsLO alu-dum_O) 
'(rw_l alu-dum_l) 
'(alu ai hi) 
'(alu-dum_O rw-dec_O) 
'(alu-dum_l 8) 
'(ai rr) 
'(hi rr shifLl) 
'(dsLO 8) 
'(dsLl shifL2) 
'{src rr) 
'{shifLO src) 
'(shifLl 8) 
'(shifL2 dimm) 
'(dmux_l dsLO) 
'(pads_l dmux.__l) 
'(mem_l pads_!) 
'(dimm mem_l) 
) 

% 
%lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 

= > (load 'r2l.phase-calc-temp] 
;; Loading file "r2l.phase-calc-temp.l" 
t 
= > (setq phase-part (optO 120] 
(wall2 wall3) 
= > (optl phase-part] 

--NOTE: we have four phases of 90ns each, here. 

phase-calc-cost: (exec.refine r21.l 90 90 90 90) 

I> PAchk [clock.l]: CPU time for preprocessing: 3.26666536 seconds 

;; Loading file "result.refine.l" 
phase-calc-cost 510 

=> 
Exiting ... 
% lisp 
Franz Lisp, Opus 43.1 [sun-20.5] 
(C) Copyright 1985,1986,1987 Franz Inc., Alameda Ca. 

= > (load 'r2l.phase-calc-temp] 
;; Loading file "r21.phase-calc-temp.l" 
t 
= > (setq part2 (optO 200] 
(wal12 wal13 wall4 wallS) 

llO 



= > (opt12 part2) 

-- NOTE: four phases of 170ns each. 
--NOTE: predictably, this is not a good solution. 

phase-calc-cost: (exec.refine r21.1 170 170 170 170) 
I> PAchk [clock.l]: CPU time for preprocessing: 3.48333194 seconds 
;; Loading file "result.refine.l" 
phase-calc-cost 710 

-- NOTE: phases of different lengths - not acceptable for implementation. 

phase-calc-cost: (exec.refine r21.1 340 161 170 223) 
I> PAchk [clock.l]: CPU time for preprocessing: 3.54999858 seconds 
;; Loading file "result.refine.l" 
phase-calc-cost 523 
curcost = 523 

Exiting ... 

% 

111 



Appendix 4 · Control Synthesis examples 

We show how pipeline control logic can be synthesized in two different styles using PA and 

SCHED for a small example. Our objective here is to detail the steps that lead to the 

definition of the control machine. 

The example consists of MOS dynamic gates, which require precharging. The blocks 

Pl and P2 represent the precharging of gates Gl and G2, respectively. The blocks LO, Ll 

and 12 are the stage latches. We start with the PA step; the cycle time is lOOns, with a 

two-phase clock at 50ns per phase. Fig.a4.1 is a diagram of the example; the files are in 

Fig.a4.4. 

The following pages show the result from PA; the PA step is trivial on this small 

example; our purpose is to describe control synthesis techniques here. We also show the 

output from SCHED. The resulting initiation sequence corresponds to a loop of minimal 

length in the pipes state graph (cf. [Kogge 81] and this report, chap. 4). We show this 

state graph for the example. 

This pipe can use either time-stationary or data-stationary control [Kogge 81]. In 

Data-Stationary control, the control signals Bow through the pipeline along with the data 

they control. The control logic is therefore trivial. We simply ship control signals to enable 

the gates and latches every time an initiation is made. Fig.a4.2 shows the control logic for 

the initiation sequence produced by SCHED. The tradeoff here is that data-stationary con­

trol requires extra latches to correctly time the Bow of control signals through the pipe. 

The second control style is time-stationary control. In this scheme, all the gate con­

trol and latch control signals are generated centrally. The controller therefore has to know 

where there is valid data in the pipe at every instant. Using this information, the con­

troller generates the proper signals to time the Bow of data through the pipe. Each exact 

pattern of valid data in the pipeline corresponds to one state in the pipes state diagram 

[Kogge 81]. 

112 



FIG A4.1: A TUTORIAL EXAMPLE 

(LO) (Ll) 

Li LATCHES 
Pi PRECHARGE Pl P2 G2 
Gi GATES 

STAGE #1 STAGE #2 

FIG A4.2: DATA-STATIONARY COt\TTROL 

CONTROL 

INPUTS 

STAGE#l 

CONTROLS 

J 
DELAY LATCH (L3) 

STAGE #2 CONTROLS: STABLE FOR 2 CLOCK CYCLES 

' 

:·:·:; 

-DELAY LATCH (L4) 

(L2) 

• • • CONTROL "FLOWS" WITH DATA 

113 



' 

FIG A4.3: TIME-STATIONARY CONTROL 

1 
STATE# 

CURRENT 
RESOURCE 
USAGE 

RESOURCE 
USAGE 

INITIATION 

ENGINE 

NEXT STATE# 

' 
STATE# 

LOAD 

I 

STATE DECODER 

' ' ' 
DATAPATH CONTROL SIGNALS 

114 

MAKE INITIA TI ON 



115 

We can describe the controller as a two-level machine, shown on Fig.a4.3. The top­

level machine is the initiation engine. The next machine is the state decoder. The initia­

tion engine decides when new data should enter the pipe. Its output consists of two signals: 

one signal indicates that a new datum should enter the pipe (LOAD), and the other is the 

number of the new state the pipeline configuration will be entering (these are the states 

from the pipe's state diagram). The state decoder machine takes a pipeline state number as 

input. This state number is sufficient to fully specify where valid data is located in the 

pipe. The output of the state decoder is all the control signals required to enable the vari­

ous gates and latches of the pipeline. 

In the case of static [Kogge 81] pipes, the initiation engine can be a simple FSM. This 

FSM can be generated automatically as follows. We note that the transition diagram of 

this FSM is exactly the state diagram of the pipeline. We then feed the pipe's state 

diagram to an FSM synthesis tool such as KISS [DeMicheli 85] or MUSTANG [Devadas 87] 

to generate the initiation engine. 

For dynamic pipes that support multiple initiation patterns, this engine could be a 

fairly complex microcoded machine that decides when to accept new data based on current 

resource usage and scheduling priorities. For instance, the Burroughs BSP Supercomputer 

[Hackney 81] has a very complex control engine that dynamically schedules instructions 

onto its vector pipeline to maximize throughput. The BSP can be viewed as a pipeline that 

executes instructions. 

The state decoder can be viewed as a combinational logic function. Each state 

number corresponds to a pattern of valid data present in the pipe. The output from OPD 

shows what this pattern looks like, as in Fig.a4.4. This pattern is sufficient to specify the 

state decoder. We generate "enable" signals for a particular stage during a particular clock 

cycle if there is a number in the entry that corresponds to that stage/cycle pair in the valid 

data pattern calculated by OPD. Fig.a4.5 shows this in more detail; it also shows how we 

can then generate a FSM or PLA to perform the state decoding 



FIG A4.4 

, 
; Small Pipe example for control synthesis description 
; The Pipe is: 

LO-Pl-Gl-Ll-P2-G2-L2 

; where the Li are stage latches, the Pi are precharge blocks 
; and the Gi are dynamic gates. 

(phases 50 50) 

(blocks 
'(LO LATCH 0) 
'(Pl DYNAMIC 50) 
'(Gl DYNAMIC 50) 
'(Ll LATCH 0) 
'(P2 DYNAMIC 50) 
'(G2 DYNAMIC 100) 
'(L2 LATCH 0) 
) 

(path 
'(Pl LO) '(Gl Pl) '(Ll Gl) '(P2 Ll) '(G2 P2) '(L2 G2) 
) 

(constraints 
'(EQPHI LO L1 L2) 
'(NEQPHI G1 P1) 
'(NEQPHI G2 P2) 
) 

(stages 
'(LO L1) 
'(Ll L2) 
) 

Output from PA: 
Block ___ Fire cycle. phase .offset 

L0. ___ -1.1.50 
Pl 0.0.0 
Gl 0.1.0 
Ll 0.1.50 
P2 1.0.0 
G2 1.1.0 
L2 2.1.0 

Output from SCHED, the Reservation Table Scheduler: 

restab unit: 
scheduler: 

70 
-/worklsched.hu/all -t 3 -s 2 

The reservation table being optimized: 
X--

116 



-XX 

The forbidden latency set contains time slot: 
0 1 

The range of MAL is: 2 < = MAL<= 2 

The optimal sequence is as follows : 
OPTSEQ 1 ( 2) 
The order of states are: 
110 
OPTMAL 2 

Reservation Table at each State: 

StateO 
2-3 
122 

From this, we extract the steady-state reservation table: 
(please refer to the text) 

lXI-I 

lXI XI 

This corresponds to the first two cycles of the table above. 

117 



CYCLE NO. 1 

~;TAGE #1 X 

STAGE #2 

FIG A4.5: TIME-STATIONARY CO!\T"fROL 

2 

X 

X,O, •: SUCCESSIVE INITIATIONS. 

3 4 5 6 7 

0 • 

X 0 0 • • 

Q STEADY-STATE STATE USAGE PATTERN FROM SCHED u SEE FIG.A4.4 AND TEXT, PLEASE. 

CYCLE NO. 1 2 

STAGE #1 

STAGE #2 

STATE DECODER SPECIFICATION 

CYCLE 1 => ENABLE ST AGE#l AND ST AGE#2 

CYCLE 2 =>DISABLE STAGE#2, ENABLE STAGE#2 

THERE IS ONLY ONE PIPE STATE HERE 

THE PIPE STATE REPEATS ITSELF EVERY TWO CLOCKS 

THE SPEC IS FED TO A LOGIC SYNTIIESIZER 

118 


